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ABSTRACT

Forensics examiners frequently search for known content by comparing each file from a target
media to a known file hash database. We propose using sector hashing to rapidly identify
content of interest. Using this method, we hash 512 B or 4 KiB disk sectors of the target media
and compare those to a hash database of known file blocks, fixed-sized file fragments of the
same size. Sector-level analysis is fast because it can be parallelized and we can sample a
sufficient number of sectors to determine with high probability if a known file exists on the
target. Sector hashing is also file system agnostic and allows us to identify evidence that a
file once existed even if it is not fully recoverable. In this thesis we analyze the occurrence of
distinct file blocks–blocks that only occur as a copy of the original file–in three multi-million
file corpora and show that most files, including documents, legitimate and malicious software,
consist of distinct blocks. We also determine the relative performance of several conventional
SQL and NoSQL databases with a set of one billion file block hashes.
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CHAPTER 1:
Introduction

Quickly identifying content of interest on digital media is critical to the forensic investigation
process. Given a large disk or set of disks, an examiner requires an efficient triage process
to determine if known content is present. Today, examiners identify content by comparing
files stored on the target media to a database of known file hashes collected from previous
investigations. Traditional forensic tools identify stored files by analyzing the file system or
carving files based on headers and footers [1–4].

Analyzing the file system to identify content has several shortcomings. Relevant content may
be stored in areas that are not directly parsed by the file system, such as unallocated or slack
space. Portions of files or the file system may be unreadable due to partial overwriting or media
failure. The current methods are not robust to new or unknown data types, file formats or file
systems. Finally, the entire file system must be read to find files of interest and the search
process is difficult to parallelize due to the file system tree structure [5].

Although file carving addresses some of these issues by parsing the raw bytes on the disk,
carving itself has several shortcomings. For example, file carving based on headers and footers
is not effective at identifying content from overwritten or partially destroyed files, or content
that is fragmented into multiple locations on the media. File carving is also prone to false
positives.

1.1 How distinct sector identification works
We propose a forensic method that uses sector hashing to quickly identify content of interest.
Using this method we search for content in disk sectors, fixed-sized chunks of physical disk
that are the smallest unit to which data can be written. Current file systems such as FAT, NTFS,
Ext3 and Ext4 and next generation file systems such as ZFS and the B-tree File System (BtrFS)
write files on sector boundaries. The standard sector size is 512 B, although most modern disks
are moving to 4 KiB for format efficiency and more robust error correction [6]. For example,
when a 60 KB JPEG file is stored, the first 512 B are written to one sector, the second 512 B
are written to the next sector and so on. Because most files are sector aligned, we can search for
content by comparing the hash of each 512 B or 4 KiB disk sector on the target media to a hash
database of fixed-sized file fragments of the same size, which we call file blocks.
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Figure 1.1: Because files are stored on sector boundaries, we can search disk sectors for file blocks, or fixed-sized
chunks of data equal in size to the disk sectors. We create a file block hash database that contains block hashes for
every file that we have ever seen during an investigation. A database with 1 billion 512 B block hashes can reference
512 GB of content. Sector hashing depends on the existence of distinct file blocks, or blocks that only occur as a
copy in the original file. With full media analysis, all 4 billion sectors from the 2 TB drive are compared to the file
block hash database. With media sampling, only 1 million of the 2 billion sectors from the 1 TB drive are compared to
identify a 4 MB file that has all distinct blocks with 98.17% accuracy. If block B is seen on a disk sector, then there
is a good chance that File 1 also exists on the disk. Block B only occurs in one file in our large corpus of known files
and is effectively distinct. If Block A is seen on a disk sector, then we are not sure if any of the files exist. Block A is
non-distinct. Sector hashing can quickly identify fully intact and incomplete files that contain distinct blocks.

This example demonstrates the use of sector hashing to identify the presence of three files (1,
2 & 3) on the subject media. The block hash database contains all of the blocks from a corpus
of every file that has ever been seen during an investigation. The database is a key-value store
where the key is a hash of a file block and the value is a list of every file in which the block
occurs.

Figure 1.1 is a graphical representation of a 2 TB disk that has four billion 512-byte sectors. It
contains three previously seen files; File 1, File 2 and File 3. File 1 and File 2 are both 60 KB
JPEG images that have 120 512-byte blocks, matching the sector size. The files are intact,
which means that every file block is currently stored in a disk sector. As shown in Figure 1.1,
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File 1 contains blocks A - E and File 2 contains blocks A and F - I.

File 3 is a 4 MB high-resolution JPEG image that has 8,192 blocks. This file is incomplete be-
cause some of the sectors that previously stored its blocks have been overwritten. The remaining
blocks have not been overwritten and are stored in the disk sectors. This scenario occurs after a
file is deleted and the containing sectors are made available for new files. File 3 contains blocks
A, D and J - L.

1.1.1 Sector hashing and full media analysis for residual data identifica-
tion

Using sector hashing in full media analysis, we compare every sector of the 2 TB disk to the
block hash database. When the sector that contains block B is identified, we know that File 1
may be present on the disk because block B only occurs in File 1 of all the files in our corpus.
We do not know if File 1 is definitely present because block B could occur in a different file
that is not included in our corpus–knowing that block B is present is not sufficient to prove that
File 1 is also present. When the sector that contains block A is identified, we have even less
confidence that File 1, File 2 or File 3 are present. Since Block A occurs in multiple files in our
corpus, we believe the block likely occurs in other files that are not in our corpus–knowing that
block A is present does not prove that any of the files from our corpus are present.

Sector hashing for file identification depends on the existence of distinct blocks, or blocks that
only occur on media as a copy of the original file for all files. We cannot prove that a block is
universally distinct. However, we can treat blocks that only occur once in a large file corpus,
such as block B in our example, as if it were universally distinct. Doing so allows us to quickly
find evidence that a file is present on disk. Deeper file-level analysis is used to confirm the file’s
presence.

After analyzing all of the sectors from our target disk we learn that all of the blocks from File 1
and File 2 and some of the blocks from File 3 are stored on the disk. If the majority of File 1’s
blocks do not occur in any other corpus file, then the results provide strong evidence that File 1
is currently present on the disk. The same is true for File 2. If File 3’s block are also not
repeated elsewhere, then the results provide strong evidence that File 3 was once present on the
disk.

3



1.1.2 Sector hashing and random sampling for triage
Using sector hashing for media sampling also allows for a faster triage process. Instead of
searching all of the disk sectors, we can search a sample set of randomly chosen sectors to
determine with high probability that a file is present as illustrated in Figure 1.1. The sample
size must be large enough to ensure that we will almost certainly select a sector that contains at
least one of the blocks in the file if it is present. We can determine an appropriate sample size
using the well known “urn” problem, a statistical model that describes the probability of pulling
some number of red beans out of an urn that contains a mix of red and black beans randomly
distributed [7].

The red beans are the sectors that contain the distinct blocks of the content we are trying to
identify. The black beans are sectors that do not contain the distinct blocks, all remaining
sectors. The total number of beans is the number of sectors on the target media. If we are trying
to identify a 4 MB JPEG of all distinct blocks on a 1 TB drive, there are 8,000 red beans (C),
and 2 billion beans in total (N). If we randomly select 1 million (n) beans we have a 98.17%
chance of selecting a red bean at least once, or detecting the 4 MB file.

Equation 1.1 calculates the probability of not finding even a single red bean in n draws and
subtracts that from one to get p, the probability that at least one red bean is found in n draws:

p = 1−
n

∏
i=1

((N− (i−1))−C)

(N− (i−1))
(1.1)

Using sector hashing with random sampling provides a quick triage method to determine if a file
of interest is likely present on a target media. The method is file system and file type agnostic;
as long as we can read the disk sectors and have a copy of the file in our block hash database, we
can use sector hashing to find evidence of the file on disk. Sector hashing can also find evidence
of a file that was once present but has been partially overwritten and is not fully recoverable.

1.2 Design Issues
There are several design issues in implementing media analysis with sector hashing. The first is
choosing an appropriate block size for the hash database. We considered both 512 B and 4 KiB,
the standard sector sizes for current drives. Using 512 B blocks allows for more granularity in
the search but requires that we store eight times as many hashes—there are eight 512 B blocks
in every 4 KiB block. As discussed in Chapter 7, the size of the block hash database has a
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major effect on performance, so it is critical that we maintain the minimum amount of data
without missing evidence of a file’s presence. The results from the distinct block experiment in
Chapter 5 suggest that we do not loose meaningful precision by using a 4 KiB block since there
are similar trends in the 512 B and 4 KiB blocks found in millions of real files and various file
types.

If we search for 4 KiB blocks on a target media that has 512 B sectors, we can read eight sectors
at once to compare to the hash database. We would also have to read multiple 4 KiB chunks
from the media that start at different 512 B offsets (e.g. offsets of 0 B, 512 B, 1024 B, etc.) to
ensure that we do not miss any 4 KiB blocks due to alignment [5].

Based on storage requirements and because we do not loose meaningful precision, 4 KiB is the
appropriate block size.

We chose to use the MD5 hash algorithm to compute block hashes because it is widely used
within the forensic community and is computationally fast. We are not concerned that MD5 is
no longer collision resistant because our technique relies on using hashes to match known files
to target media. If an adversary creates a collision for a set of block hashes then we will still find
the file because it will still match hashes in our database. In the future, it would be appropriate
to move to SHA-3, as it will probably be faster than MD5.

Next, one must determine an appropriate data storage and query method for the block hash
database. The National Software Reference Library (NSRL) Reference Data Set (RDS) is a
corpus of standard system files used for forensic investigations. The 2009 RDS contains over
twelve million files with an average file size of 240 KB. A database of the 128-bit MD5 hash of
every 512 B block for the 2009 RDS requires approximately 92 GB of storage. We would like
to query the database as quickly as possible to allow for rapid triage analysis. It is important
that our data storage method can handle large volumes of data and can be efficiently queried
when analyzing media.

The 92 GB database can be stored in Random Access Memory (RAM), in flash on a Solid State
Drive (SSD), or on a spinning magnetic drive. Clearly it is faster to store such a database in
RAM. Nevertheless, it makes sense to compare different strategies for organizing the 92 GB
database, as even a RAM-based database will have very different performance parameters with
different organizations.

We test the relative performance of several conventional SQL and NoSQL Database Manage-
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ment Systems (DBMS) in managing a database of one billion hashes. With a 4 KiB block size,
one billion hashes allows us to index 4 TB of content. Our results show that a custom storage
solution is required to support the hash lookup speeds that our application requires.

A third issue is determining the occurrences of distinct blocks in our file corpora. We analyze
three multi-million file corpora that contain real documents, system files, and legitimate and ma-
licious software. To our knowledge, there are no previous studies analyzing the co-occurrence
of blocks across such a large number of files and file types. By using these corpora we can begin
to make general conclusions about the true frequency of distinct blocks. Our findings suggest
that most files are made up of distinct blocks that identify a single specific file.

We are also interested in determining rules to quickly eliminate disk sectors that store file blocks
that are common among many documents or file types. These sectors can be ignored early in the
analysis process. Omitting likely non-distinct sectors will improve performance by minimizing
the number of disk sectors that are compared to the file block hash database.

The fourth issue is determining the appropriate tool architecture for use in the field. There are
numerous restrictions that we consider for deployed operations including limited storage space
and computational power.

1.3 Distinct Blocks
Identifying files with sector hashes relies on the presence of distinct file blocks. A distinct

block is one that does not exist more than once in the universe except as a block in a copy of the
original file. Using distinct blocks as a forensic tool leverages two hypotheses [5]:

1. If a block of data from a file is distinct, then a copy of that block found on a data storage
device is evidence that the file is or was once present.

2. If the blocks of that file are shown to be distinct with respect to a large and representative
corpus, then those blocks can be treated as if they are universally distinct.

The first hypothesis is true by the definition of distinct blocks. If the block only exists as a block
in a specific file, then if the block is found on a piece of target media then the file must exist or
have previously existed.

The second hypothesis deals with the method of determining if a file block is distinct. It is im-
possible to prove that a block is universally distinct because doing so would require comparing
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the block to every block. However, we can identify blocks that only appear once in millions of
files and treat them as if they were universally distinct in the context of finding possible evidence
that a file once existed on a piece of media. Making such a finding requires that we tabulate
all the blocks in a sufficiently large corpus that contain the same file types as from which the
potentially distinct block came.

We performed this exercise with three large file corpora that each contain millions of files of
various file types including documents, operating system files and legitimate and malicious
software. We find that the overwhelming majority of the file blocks were distinct with respect
to each corpus (and between corpora as well) and could therefore be used to identify a single
specific file.

Ideally all files would consist of mostly distinct blocks, or blocks that only occur in one specific
file. Finding one distinct block from a file on a target disk is not as convincing as finding
multiple distinct blocks from the same file on disk. Furthermore, if we find many distinct
blocks from a specific file and if the blocks are stored contiguously, we have higher confidence
that the file exists or previously existed.

1.4 Usage Models
Our primary usage model is a single system field deployment on a consumer laptop or desktop.
In this model, the block hash database is stored locally or on a piece of removable media. The
current storage capacity of commodity drives and external media is as large as a few terabytes in
size. This is sufficient to store the block hashes of as many as one billion files. To store the MD5
block hashes of 1 billion files with an average size of 512 KB and a file block size of 4 KiB
requires 2 TB of storage. This size will fit into the largest storage capacity of a commodity
system or external storage device available for purchase today.

The limitation of using a single system model is the available memory. The current maximum
memory available for a consumer laptop system is 16 GiB. As discussed in Chapter 7, the
conventional DBMSs perform best when the database fits into memory. For the conventional
DBMSs studied, 16 GiB can contain the block hash database for 100 million block hashes–the
1 billion hash database has an average size of 112 GB. For a block size of 4 KiB, 100 million
block hashes represents 400 GB of content. This amount of content can support a few hundred
million files with an average file size of 512 KB.

Another limitation is that only one examiner can use the system at a time, as the database is
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only locally available. However, this model is typical for field deployed systems and we focus
our analysis on the single system model for this thesis.

A second usage model is the client/server model. In this model, the block hash database is
stored on a remote server and accessed by many clients simultaneously. Similar to the single
system model, the server can store the database locally or use external media. Servers typically
have significantly more local storage space than a laptop or desktop. Servers also have more
memory, typically a couple hundred gigabytes which easily supports the 1 billion hash database
stored by all the conventional DBMSs used in this thesis.

The client reads the target media and sends the sector hashes to the database for comparison.
For this model, we must consider the network throughput and latency. Throughput will limit
the maximum number of hashes that can be searched per unit time. Latency is an issue with
simplistic designs that do not rely on asynchronous Remote Procedure Calls (RPC).

The final usage model is a distributed database model. In this model, the hash database is split
between multiple database servers. Because hash values are evenly distributed it is trivial to
parallelize the database using prefix routing [8]. A cluster with 1,000 servers that each manage
a database of 1 billion 4 KiB blocks can address four petabytes of known content. The benefit
of the distributed database model is that it maintains the performance of a smaller database
because each server only manages 1 billion hashes. Similar to the client/server model, the
effects of network throughput is a factor but the impacts of latency are minimal if the lookups
are batched and pipelined.

1.5 Chapter Outline
The following chapters discuss several of the design issues for implementing sector hashes for
forensic triage analysis. Chapter 2 discusses prior work using content hashing to identify files.
Chapter 3 provides a classification framework to discuss file block types. Chapters 4 and 5 dis-
cuss an experiment to determine the number of distinct blocks in three large file corpora of over
15 million files including user-generated documents, system files, legitimate and malicious soft-
ware. Chapters 6 and 7 discuss an experiment to determine if conventional databases can meet
the performance requirements of our file block hash database. Chapter 8 concludes, discusses
the limitations of sector hashing and presents future work.

The major contributions of this thesis are: (1) the empirical evidence of distinct blocks in mil-
lions of files of various file types that can be used to identify a specific file, and (2) relative
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performance analysis of conventional DBMSs in storing 1 billion hashes.
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CHAPTER 2:
Prior Work

This review spans two major forensic research areas; file identification and large hash databases.

2.1 File Identification
Traditionally, files are identified in forensic processing using file system metadata and carving.
File metadata consists of information such as file name, creation time, size and the location of
the file on disk. The metadata is stored in file system data structures that must be intact and
decodable. This is the most straight-forward method to identify a file but metadata is trivially
modified to hide the presence of a file without corrupting the contents.

File carving is the practice of searching an input for files or other kinds of objects based on
content, rather than on metadata [9]. It is a powerful tool for recovering files and fragments of
files when metadata is corrupt or missing either due to deleted files or damaged media. Most file
carvers operate by looking for file headers and/or footers, distinct tags at the beginning and end
of the file, and carving out the blocks between these two boundaries. More complex methods
are needed to handle fragmented files. Various file carving methods are listed in Table 2.1.

Hash-based carving is the same idea as the distinct block identification presented in this thesis.
frag_find is a forensic tool that performs hash-based carving [10]. The tool greedily searches the
disk image for the longest run of sectors that match a contiguous series of file blocks. frag_find

stores the entire sector hash database in RAM using an Standard Template Library (STL) map
(a red-black tree). Its operation relies on the existence of distinct blocks and distinct block
sequences. Although frag_find was published several years ago, there was no follow up work
until this thesis and there has never before been a study of the prevalence of distinct blocks.

Dandass et al. present a case study where they analyzed hashes for over 528 million sectors
extracted from over 433,000 files. They computed SHA-1, MD5, CRC32 and CRC64 hashes for
each sector and compared the algorithms according to the number of false-positive indications
and the storage capacity for the entire hash collection. The authors found no collisions with
either the SHA-1 or MD5 algorithms but found that CRC64 had low collision rates and required
only half the storage space. Dandass et al. conclude that CRC64 could be used as a filtering
algorithm to extract sectors that do not match sectors from a collection of known illicit files [11].
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Carving Method Description
Block-based carving Analyzes each block of the input to determine if the block

is part of a file.
Statistical carving Analyzes certain characteristics or statistics of the input,

such as entropy, to determine which parts make up the file.
File structure carving Carves files based on the internal structure of file types.
Semantic carving Analyze the meaning of the input, such as linguistic analysis.
Carving with validation Uses a file type validator to confirm carved files.
Fragment recovery carving Reassembles two or more fragments to form the original file or

object.
Hash-based carving Hashes portions of the input and searches for matches to hashes

of known files.

Table 2.1: Garfinkel and Metz propose the listed methods as a file carving taxonomy [9]. File carving tools that use
file meta data or the file’s internal structure are usually only effective at identifying fully intact and contiguously stored
files. Tools based on the other methods, block-based, statistical, semantic, validation, fragment and hash-based, can
identify fragments of a file by searching for exact matches or characteristics that are prevalent throughout a file.

However, follow up work by Garfinkel questioned this work as modern MD5 implementations
are actually faster than CRC64 implementations and MD5 can take the same amount of storage
as CRC64 if only half of the hash is retained.

The EnCase File Block Hash Map Analysis (FBHMA) EnScript is another sector hashing tool
that searches for file blocks in disk sectors [12]. The script creates a database of target file
block hashes from a master list and searches selected disk sectors for the file blocks. FBHMA
also carves files using sector hashing, including files that have been partially overwritten or
damaged. This tool was primarily designed to search file slack space, unused disk areas and
unallocated clusters and not entire disks. It is not optimized for full media analysis and cannot
perform sampling.

The md5deep tool suite also supports sector hashing [13]. md5deep is a set of tools to compute
cryptographic message digests, including piecewise hashes, on an arbitrary number of files. The
tool supports searching for file block hashes in media sectors. We used md5deep extensively in
this thesis to compute the block hashes of our file corpora. Like the other sector hashing tools,
md5deep is not optimized to support a large database of hashes and cannot perform sampling.

Wells et al. used block hash filtering to extract the most interesting data from a mobile phone
for forensic investigations [14]. They divide media into small fixed-sized overlapping blocks
and use block hashes for deduplication. The media blocks that match a library of known media
block hashes computed from other phones are excluded under the assumption that matching
blocks do not contain information of interest to investigators. According to their findings, their
method reduces the amount of acquired data from collected phones by 69%, on average, without
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removing usable information.

2.2 Large Hash Databases
A critical issue with sector hashing is the performance requirements for a large and fast database
of file block hashes. For the single system usage model, the database must be small enough to
fit on a consumer laptop or external storage device and the query rate must be fast enough to
allow for rapid triage, identifying potential files of interest as quickly as the media can be read.
There has been several research initiatives to determine the best method to store and query large
collections of sector hashes.

Collange et al. present a file fragment data carving method using Graphical Processing Units
(GPUs). They compute hashes for every 512 B disk sector and compare the hashes to 512 B
blocks from known image files. If there is a match, then the disk is flagged to signify that a file of
interest potentially existed on the disk and that it requires deeper analysis. Taking advantage of
the multiple cores in a GPU, they implement a parallel pattern matching engine that can process
every 64 B fragment aligned on 32-bit boundaries in disks at a sustained rate of approximately
500 MB/s [15].

Farrell et al. evaluate the use of Bloom filters (BFs) to distribute the National Software Ref-
erence Library’s (NSRL) Reference Data Set (RDS) [16]. The NSRL RDS is a collection of
digital signatures of known, traceable software applications [17]. The evaluation was conducted
with version 2.19 of the NSRL RDS that contains approximately 13 million SHA-1 hashes.
Bloom filters were thought to be an attractive way for handling large hash sets because the data
structure is space efficient. Farrell et al. could only obtain 17 K to 85 K RDS hash lookups
per second using SleuthKit’s hfind command and only 4 K lookups per second using a MySQL
InnoDB database. Using a new BF implementation on the same hardware, query rates between
98 K and 2.2 million lookups per second were achieved. However, using BFs makes it dramati-
cally easier for an attacker to construct a hash collision in comparison with a collision-resistant
function such as SHA-1. The authors comment that an attacker could leverage the vulnerability
to hide illicit data when BFs are used to eliminate “known goods“ [16].
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CHAPTER 3:
Taxonomy

This chapter presents a taxonomy for classifying blocks that we will use in the distinct block
experiments.

3.1 Block Classification
The principal classification of a block is based on the number of times the block occurs in a
corpus. Blocks that occur exactly once in the corpus are called singletons; blocks that occur
exactly twice are called pairs; blocks that occur three or more times are called common. We
created the three categories based on initial observations and then formed our hypothesis of the
root causes for the frequency of occurrence to fit the observations.

Singleton blocks are those blocks that were found just once in the corpus. Pair blocks are those
that were found twice. We hypothesize that pair blocks occur in files that are related, either
because one file is embedded or contained in the other file or because one file is a modified
version of the other file. Common blocks occur more frequently and we expect them to exist
due to a commonality between all files or file types. For example, the block of all NULs (0x00)
is a common block that is used to pad data in a file. In fact, the block of NULs is the most
common block in our corpus.

The secondary classification of a block is based on the characteristics of its content. For our
analysis, we classify blocks based on the byte entropy and the length of any repeating n-grams.
We use Shannon entropy to measure the predictability of the byte values in each block [18]. An
entropy score of 0 means that the block has 0 bits of entropy per byte and has a single byte value
repeated throughout the block, for example the block of all NULs (0x00). An entropy score of 8
means that the block has 8 bits of entropy per byte and any byte value is equally likely to appear
in the block, for example an encrypted block that resembles random data.

We also classify blocks based on the existence and length of the shortest repeating n-gram. An
n-gram is a chunk of n-bytes. If a block consists of a byte pattern, or repeating n-gram, that
repeats throughout the block, we call it a repeating n-gram block. The length of the n-gram
can be as small as one byte and as large as half of the block size. For 512 B blocks, the largest
repeating n-gram is 256 bytes and for 4 KiB blocks, the largest repeating n-gram is 2,048 bytes.
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Classification Definition
Principal Classification
Singleton Appear only once in a corpus
Pairs Appear exactly twice in a corpus
Common Appear three or more times in a corpus
Secondary Classification
Entropy Predictability of byte values in the block (0-8)
Repeating n-gram Block Contains a repeating n-gram
N-gram Size The size n of the repeating n-gram (0-half of block size)

Table 3.1: A list of the principal and secondary classification of file blocks in the corpora.

It is important to note that the last instance of the repeating n-gram may not fully repeat before
the end of the block. For example, the string abcabcab consists of a repeating 3-gram ‘abc’ that
is repeated twice and starts to repeat in the end of the string. It is also important to note that we
do not look for blocks that consist of repeated byte sequences separated by variable data. For
example, the string abracadabra obviously consists of a repeated 4-gram ‘abra’ but the pattern
is interrupted with other variable data so the string is not considered a repeating n-gram.

We found many examples of common blocks with various entropy values and repeating n-
grams. In general, we found that most blocks with low entropy or repeating n-grams were
common, making these tests a useful prefilter.

Table 3.1 summarizes the block classifications used for our research.

3.2 Future Block Classification
An additional classification category that was considered but not used is based on printable
ASCII strings found in a file block. Strings-based file identification is commonly used in foren-
sics and malware detection and is also useful for our method [19,20]. All of the documents from
the million government document corpus [21] (Govdocs1) were downloaded from government
websites and most of the documents were in a human readable format (i.e. PDF, HTML, DOC,
TXT). As a result, many of the blocks contain printable ASCII strings.

There are several expected types of string-based n-grams such as a string of all spaces, govern-
ment related terms, any word in the English language and textual representation of numbers. If
the strings are distinct we want to search for other blocks that have the same strings to identify
other copies of the file. On the other hand, if the strings are common and repeated in many file
we will not use it to identify a specific file.

Due to the time constraints of our research, we did not pursue string-based block classification
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Classification Definition
All spaces Consists of a string of space characters (0x20)
Government related terms Consists of government-related words
Textual Representation of #s Consists of textual representation of numbers

Table 3.2: A list of potential string-based secondary block classification categories.

but believe that it should be studied in future research in distinct block identification.

Table 3.2 summarizes the string-based classifications.
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CHAPTER 4:
Distinct Block Experiment

The objective of the distinct block experiment was to determine the occurrences of distinct
blocks in a large collection of files. We hoped that a significant number of file blocks would
be distinct in our corpus justifying the use of distinct blocks for identifying the presence of a
single file. To this end we examined millions of real files and enumerated the number of distinct
blocks.

To our knowledge, there are no previous studies analyzing the co-occurrence of blocks across
such a large number of files and variety of file types. By using these corpora we can begin to
make general conclusions about the true frequency of distinct blocks.

4.1 Resources
We used three existing file corpora to perform the experiments. Together, these corpora repre-
sent over 15 million files. The million government document corpus (Govdocs1) is a collection
of nearly one million freely-redistributable files that were obtained by downloading content
from web servers in the .gov domain [21]. The Offensive Computing Malware corpus (OCMal-
ware) is a collection of approximately 3 million malware samples that were acquired from var-
ious collection and trading networks world wide [22]. The National Institute of Standards and
Technology (NIST) National Software Reference Library (NSRL) Reference Data Set (RDS)
is a collection of known, traceable software applications [17]. All three corpora consist of real
data, and Govdocs1 and NSRL RDS contain additional provenance such as the original file
name and creation date.

We used md5deep and Digital Forensics XML (DFXML) to compute and process the MD5 hash
of each block in the file collection. md5deep is a set of cross-platform tools to compute message
digests for an arbitrary number of files [13]. The tool can also compute piecewise hashes where
files are broken into fixed sized blocks and hashed. md5deep can be configured to output the
hashes in DFXML format. DFXML is an initial XML schema that provides common tags to
allow for easy interoperability between different forensic tools [23].

We wrote tools to analyze the block hashes computed by md5deep using using Garfinkel’s C++
DFXML processing libraries [23] as the Python implementation was too slow and required too
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Count Extension Count Extension Count Extension Count Extension
231,512 pdf 10,098 log 254 txt 14 wp
190,446 html 7,976 UNK 213 pptx 8 sys
108,943 jpg 5,422 eps 191 tmp 7 dll

83,080 text 4,103 png 163 docx 5 exported
79,278 doc 3,539 swf 101 ttf 5 exe
64,974 xls 1,565 pps 92 js 3 tif
49,148 ppt 991 kml 75 bmp 2 chp
41,237 xml 943 kmz 71 pub 1 squeak
34,739 gif 639 hlp 49 xbm 1 pst
21,737 ps 604 sql 44 xlsx 1 data
17,991 csv 474 dwf 34 jar
13,627 gz 315 java 26 zip

Table 4.1: The Govdocs1 corpus contains mostly human readable documents and images. Adobe PDF, Microsoft
Office, HTML, log files and graphical image files make up the majority of the corpus. Through our block level analysis,
we find that most files have correct extensions that match the file type, but some files do not. For example, the files
with extension txt are all HTML documents.

much memory.

4.2 File Characteristics
Each of the three file corpora represent different types of files. OCMwalware and the NSRL
RDS consist of mostly executable content and Govdocs1 consists of mostly non-executable
documents. Based on the collection methodology and purpose of each corpus, OCMalware has
mostly malicious content while Govdocs1 and NSRL RDS have mostly non-malicious files. It
is useful that we analyzed corpora that have different types of files to determine if the exis-
tence of distinct blocks is a general characteristic. The following subsections provide additional
information about the files in each corpus.

4.2.1 Govdocs1
The Govodcs1 corpus consists of 974,777 distinct files. The majority of the files are Adobe
PDF, Microsoft Office, graphical image files and ASCII text. The average file size is 506 KB;
93% of files are larger than 4 KiB; 99% of files are larger than 512 B.

Table 4.1 summarizes the file types in the Govdocs1 corpus according to the file extension on
the originally downloaded file. Although we do not confirm the file type for all files, we verified
many of the file extensions during block content analysis discussed in Section 5.2 with the Unix
file command and with visual inspection. There are instances of file extensions that do not
match the file type, such as the files with the txt file extension that are HTML documents.
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4.2.2 OCMalware
The OCMalware corpus consists of 2,999,076 distinct files. The average file size is 427 KB;
97% are larger than 4 KiB; 99.5% are larger than 512 B. The majority of the files are in the
Windows Portable Executable (PE) format and include executables, and DLLs. Many of the
files are packed with well-known software such as the Ultimate Packer for eXecutables (UPX)
[24]. We do not provide a distribution of the file extensions because the corpus is currently
organized using a directory structure such that each sample is named malware.exe. This naming
convention was chosen to remind the user of the potential risk in working with the sample files.

We assume that the majority of the files are malicious based on the collection mechanism.
However, only a few files were compared to publicly known virus signatures. These files were
identified as malware by various antivirus software through VirusTotal.com [25]. It is an area
of future research to confirm the purpose of each executable and classify each file according to
its function.

4.2.3 NSRL RDS
The September 2009 NSRL RDS corpus consists of 12,236,979 distinct files. The average file
size is 240 KB; 59% of the files are larger than 4 KiB; 90% of the files are larger than 512 B.
Most of the corpus files are executable and some of the files may be considered malicious (i.e.
steganography tools and hacking scripts [17]). The actual NSRL is not publicly available but
NIST does publish the NSRL RDS. NIST provided the 4 KiB block hashes and file metadata
used for this experiment.

4.3 Block Analysis Methodology
There were three phases carried out in the distinct block experiment: Computing Block Hashes,
Classifying Blocks and Content Analysis of Select Blocks. The following sections describe
each phase in detail.

4.3.1 Computing Block Hashes
We used md5deep to compute the MD5 cryptographic hash digest of every 512 B and 4 KiB
block in Govdocs1 and OCMalware. NIST provided 4 KiB SHA-1 block hashes from their
2009 RDS. The 512 B block hashes were not available at the time of this research. At the
completion of this phase, we had five sets of block hashes to use for analysis: Govdocs1 4 KiB,
Govdocs1 512 B, OCMalware 4 KiB, OCMalware 512 B and NSRL 4 KiB.
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4.3.2 Classifying Blocks
We created a C++ program sector_stats to analyze the hashes generated by md5deep. The
program counts the number of singleton, pair and common blocks as defined in Chapter 3 for
each of the five hash sets. We only include full blocks and ignored files and end blocks that
were smaller than 512 B or 4 KiB in size.

Our program also checks for duplicate files using the MD5 file hash provided in the md5deep
output and ignores any files that had been previously processed.

4.3.3 Content Analysis of Most Common and Random Blocks
We analyzed the top 50 most common blocks and 50 other randomly selected pair and common
blocks in Govdocs1 and OCMalware to try to understand the reason that the blocks occurred in
multiple files. For each block, we determine how many unique files and file types (as reported
by the file command) the block occurred in as well as the entropy and pattern size of the block
content. We also extract a sample of the block from a file in the corpus using dd and examine
the contents with hexdump. When appropriate, we also viewed a sample of files that contained
the block with emacs or the corresponding file viewer.

This analysis provided insight into the root cause of non-distinct blocks and identified several
file-type specific block patterns that could be used to identify types of files.

Chapter 5 discusses the results of these experiments.

We did not perform this analysis with the NSRL blocks since we did not have a copy of the
original files.
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CHAPTER 5:
Distinct Block Experiment Results

This chapter discusses the results of the distinct block experiment with the million government
document corpus (Govdocs1), the Offensive Computing Malware corpus (OCMalware) and the
National Institute of Standards and Technology (NIST) National Software Reference Library
(NSRL) Reference Data Set (RDS) (NSRL2009).

5.1 Block Classification
As demonstrated in Table 5.1, the vast majority of blocks in each corpus are singletons and
correspond to a single, specific file. This is not surprising. High entropy data approximates a
random function. A truly random 512 B block contains 4,096 bits of entropy. There are thus
24,096 ≈ 101,200 possible different blocks and they are all equally probable. It is therefore in-
conceivable that two randomly generated blocks would have the same content. The randomness
of user-generated content is less than 8 bits per byte, of course, but even for content that has an
entropy of 2 bits per byte there are still 1,024 bits of entropy in a 512B block, making it once
again very unlikely that a block will be repeated by chance in two distinct files [7].

Table 5.2 shows that all kinds of user-generated content from Govdocs1, including word pro-
cessing files and still photographs contains blocks that are only seen in one file in a large corpus
of files. According to the distinct block hypothesis, these singletons can be treated as univer-
sally distinct blocks and used to find evidence that a particular file once existed on investigation
media.

Govdocs1 OCMalware NSRL2009
Total Unique Files 974,741 2,998,898 12,236,979
Average File Size 506 KB 427 KB 240 KB
Block Size: 512 B
Singletons 911.4M (98.93%) 1,063.1M (88.69%) n/a n/a
Pairs 7.1M (.77%) 75.5M (6.30%) n/a n/a
Common 2.7M (.29%) 60.0M (5.01%) n/a n/a
Block Size: 4 KiB
Singletons 117.2M (99.46%) 143.8M (89.51%) 567.0M (96.00%)
Pairs 0.5M (.44%) 9.3M (5.79%) 16.4M (2.79%)
Common 0.1M (.11%) 7.6M (4.71%) 7.1M (1.21%)

Table 5.1: Occurrences of singleton, pair and common blocks in the Govdocs1, OCMalware and NSRL2009 corpora.
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Extension File 4 KiB Block % Singleton % Pair % Common Extension File 4 KiB Block % Singleton % Pair %Common
Count Count Count Count

wp 15 393 100.00 0.00 0.00 tif 4 3 100.00 0.00 0.00
sys 2 7 100.00 0.00 0.00 pst 2 2 100.00 0.00 0.00
jar 16 18 100.00 0.00 0.00 exe 6 5 100.00 0.00 0.00
dwf 299 10551 100.00 0.00 0.00 dll 4 3 100.00 0.00 0.00
data 2 20 100.00 0.00 0.00 chp 3 8 100.00 0.00 0.00
sql 366 57060 99.98 0.02 0.00 kmz 692 68057 99.96 0.01 0.04
gz 13152 2165282 99.96 0.03 0.00 docx 161 8160 99.91 0.02 0.06
jpg 102287 9063011 99.86 0.05 0.09 png 3367 272818 99.75 0.18 0.07
pptx 212 140626 99.72 0.13 0.16 text 64539 12800405 99.61 0.23 0.16
gif 29552 721060 99.61 0.22 0.16 squeak 2 3169 99.46 0.13 0.41
kml 698 32707 99.46 0.41 0.13 csv 14414 831623 99.21 0.37 0.41
xml 36313 2018734 99.08 0.62 0.31 xlsx 45 1136 99.03 0.88 0.09
java 280 2624 99.01 0.84 0.15 tmp 121 3641 98.76 0.77 0.47
pdf 230703 32291471 98.74 0.36 0.89 pub 27 200 98.50 0.00 1.50
swf 3245 444247 98.28 1.32 0.40 hlp 148 880 97.73 2.27 0.00
bmp 71 7876 97.47 0.04 2.49 xls 63628 7095968 97.44 0.97 1.58
zip 26 254 97.24 1.57 1.18 html 173618 2725941 96.80 0.93 2.26
ppt 48952 30909344 96.63 1.70 1.67 pps 1560 898737 96.47 1.96 1.57
ttf 54 263 96.20 0.00 3.80 log 8990 1014152 95.27 0.51 4.22
doc 909817 7458713 95.23 1.39 3.38 eps 5410 771165 95.20 0.54 4.27
ps 909819 6920254 95.19 1.45 3.35 js 75 527 88.24 8.73 3.04
exported 6 50 76.00 24.00 0.00 xbm 17 166 68.67 31.33 0.00
txt 199 1804 43.79 13.41 42.79

Table 5.2: The percentage of singleton, pair and common 4 KiB blocks for each file extension in the Govdocs1 corpus
ordered by highest percentage of singleton blocks. Over 95% of blocks from most file extensions are singletons. The
file extensions that have less than 95% singletons contain ASCII text and have a few nearly identical files, which results
in a high percentage of non-distinct blocks. The shown file count only includes files that are larger than 4 KiB–files
smaller than the block size are not included in the block hash database using our current methodology. The file counts
are different from those shown in Table 4.1, which includes all files.

Table 5.2 also shows a few file extensions that have less than 95% singleton blocks. The files
with extensions js, exported, xbm and txt have 88%, 76%, 69% and 44% singleton blocks,
respectively. Using the file command and analyzing the content confirmed that the all of these
files are HTML or ASCII text documents. The file data contents vary including logs, error
messages, JavaScripts, bit map files coded as C code (the xbm format), and cascading style
sheets. There are significantly fewer files with these extensions than other extensions. The high
percentage of pair and common blocks come from a few cases of nearly identical files. Because
there are such a small number of these files, the similar files have a larger effect on the overall
percentages.

For example, the Govdocs1 files with extension txt have the lowest percentage of singleton
blocks. These files are HTML documents that contain error messages about an unavailable
resource. These files are not hosted per se on government web servers but are the server’s
response when a requested resource is unavailable. The Govdocs1 corpus was generated using
a web crawler, and the crawler stores the server’s response as a file in the corpus.

We found several sets of files that are nearly identical with similar size and content. The blocks
in these files are mostly pair and common. There is only one line that differentiates these files
that share 6 out of 7 4 KiB blocks, 85% of the file content. The first six blocks contain JavaScript
that only appears in these eight files and in one other html document that does not contain an
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error message. The last block is HTML code that names the unavailable resource.

Analyzing the HTML headers and footers confirms that the files are all from the same govern-
ment website. As discussed in Section 5.2.2, pair and low-occurrence common blocks (blocks
that appear more than twice but not often) are typically found in files that are nearly identical or
are different versions of each other. These blocks are not distinct according to our definition but
can be used to identify distinct content, in this example the JavaScript that is exclusively used
in an government agency’s web pages.

There are also many singleton blocks within the standard operating system files represented in
NSRL2009 that could be used for file identification.

The frequency of singleton blocks in the OCMalware corpus is lower than the frequency in
Govdocs1 and NSRL2009 but still quite high. The number of pair and common blocks found
in the malware samples is somewhat surprising since we know that polymorphic malware can
encrypt the main body of the executable with a one-time key so that each copy has a different
file signature but performs the same function. Encryption also changes the file block signatures.
If the malware samples used this obfuscation technique, then we would find that the majority of
the blocks were singletons and not repeated in any other file in the corpus, even if another file
performed the identical function.

Fortunately, not all malware uses obfuscation and not all obfuscation techniques are highly
sophisticated. As discussed in Section 5.2, some malware variants only differ in a few blocks
throughout the file: This effects file-level signatures but would still allow block-level signatures
to identify the file. Without knowing more detail about the function and obfuscation techniques
of the samples in the malware corpus it is difficult to determine the root cause of the repeated
content. However, our results show that although the majority of blocks only occur in one file
in the malware corpus, some blocks are shared among various unique malware samples.

We also found a similar percentage of singletons for the 512 B and 4 KiB block sizes for
Govdocs1 and OCMalware. Each 4 KiB singleton block consists of a combination of eight
512 B blocks that are either singleton, pair or common, as illustrated in Figure 5.1. Since the
percentages of singletons for both block sizes are similar, we conclude that most of the 4 KiB
singleton blocks are made up of eight singleton 512 B blocks and we do not loose granularity
by choosing a larger block size. For the remainder of this chapter, we discuss the properties of
the 4 KiB blocks from each corpus unless otherwise noted.
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II.

III.
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4 KiB
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512 B

Figure 5.1: Within each singleton 4 KiB block there must exist eight 512 B blocks that are either singleton, pair or
common within the corpus. The first example 4 KiB block is made up of eight singleton 512 B blocks, each of which
only appear once in the corpus in this particular block. The second 4KiB block is made up of eight copies of a common
512 B block and the third 4 KiB block is made up of a combination of singleton and common 512 B blocks. Our results
show that the majority of 4 KiB blocks in Govdocs1 are similar in construction to the first 4 KiB example block.

5.2 Block Content Analysis Results
We performed content analysis of 100 non-distinct blocks from Govdocs1 and OCMalware; the
top 50 most common blocks and 50 randomly selected pair and common blocks in the corpus.
We did not perform content analysis on blocks from NSRL2009 because we did not have the
original files.

For each block, we examined the source files to confirm that the files were distinct and validated
the file type using the file command. We also studied the characteristics of the repeating blocks
to learn why the blocks were repeating and to begin developing general rules to determine if a
sector contains a likely distinct block. An accurate rule will improve performance by allowing
us to filter disk sectors read from the investigation media before making a database operation.
But a rule that is too general, one that has a high false positive rate, will unnecessarily discard
sectors that are distinct. Similarly, a rule that is too specific, one that has a high false negative
rate, will unnecessarily pass sectors that are common, decreasing our processing rate.

We believe that these rules should be based on entropy and the existence of repeating n-grams;
sectors below a certain entropy threshold and that have a repeating n-gram contain blocks that
are likely not distinct. The block content analysis results confirm that highly common blocks
have these properties. However, it is necessary to perform statistical analysis on singleton, pair
and common blocks to determine actual rules that could be used to filter sectors read from target
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Govdocs1 Frequency Number of Number of Entropy Pattern Description
Block Ranking Files File Types Size (Bytes)
1 88,503 5,079 5 0 1 NUL block (0x00)
2 59,250 2,996 5 0 1 All 1s (0xFF)
3-22* 10,634 2,400 1 2.3 20 Adobe Acrobat XREF Table
23 6,437 23 1 1 2 TIFF structure
24-28, 30-34* 2,996 2,996 1 3.3 n/a Compound Document SAT
29, 35-36, 40* 2,934 274 4 2 4 JFIF structure
37-39, 41-50* 2,996 2,996 1 3.3 n/a Compound Document SAT

Table 5.3: The top 50 most common blocks in Govdocs1 contain constant blocks of NUL and all 1s as well as data
structures for the Adobe PDF, Microsoft Office, JPEG and TIFF image file format. All of the blocks have low entropy
and most contain a repeating n-gram. Low entropy blocks or blocks that contain a repeating n-gram are most likely
not distinct. This table lists the frequency, number of containing files, number of containing file types, entropy, pattern
size and description for each block. Rows that have a ’*’ next to the block id show average measurements.

media. This is an area of future research.

5.2.1 Most Common Blocks
Each of the top 50 common blocks occurred thousands of times throughout each corpus across
many different distinct files. Some blocks occurred in files of the same type while others
spanned across files of different types. Some blocks occurred exactly once in each file while
others repeated several times throughout each file.

Govdocs1
Table 5.3 presents a summary of the top 50 common blocks in the Govdocs1 corpus. We found
that the most common blocks in Govdocs1 contain software-generated content as opposed to
human-generated content. This is expected due to the internal structure of many document file
types.

The two most common blocks occur 88,503 and 59,250 times, respectively. Block 1 contains
all zeros (0x00) and block 2 contains all ones (0xFF). Both blocks are repeated across many
different file types. Most likely, the block contents represent ‘filler’ data that is generated by the
software used to create the file. Clearly, any sector that is all zeros or ones is not distinct.

Blocks 3-22 occur on average 10,713 times in the corpus and consist of a repeating n-gram
of 20 characters; 0000000000 65535 f plus a newline character. The block occurs in Adobe
PDF files and is a default entry in the PDF cross-reference (XREF) table. A PDF XREF table
contains offsets to all of the objects in the PDF file and allows for quick lookup [26]. The first
ten digits specify the object’s offset into the PDF file and the second 5 digits specify the object’s
generation number. The final character indicates if the object is free, represented with ’f’, or in
use, represented with ’n’.

27



Block 23 occurred 6,437 times in the corpus and consisted of a repeating n-gram of 2 char-
acters, 0xFF 00. This block occurs in embedded Tagged Image File Format (TIFF) images in
Encapsulated PostScript (EPS) files.

Repeating n-grams are clearly not distinct because they are too common. There are only 256
(28) different blocks that contain a repeating uni-gram. The probability that two randomly
generated repeating uni-gram blocks match is 1 in 256, 0.3%. Similarly the probability for
two 2-gram blocks is 1 in 65 K (216), the probability for 3-gram blocks is 1 in 16 M (224) and
so on. The probability that two repeating 20-gram blocks match is 1 in 2160, highly unlikely.
However, we find that the Adobe default XREF entry, a 20-gram, is very common in Govdocs1.
This block occurs more frequently then expected because it is a standard block generated by
the Adobe software. There are many other common repeating n-gram blocks in Govdocs1 that
are software generated and make up a portion of the file format internal structure. Our results
support our proposed rule-of-thumb that if a block contains a repeating n-gram, it is likely not
distinct.

Blocks 24-28, 30-34, 37-39 and 41-50 occur on average 2,996 times in the corpus in Microsoft
Office documents. The blocks have low entropy but do not consist of a repeating n-gram.
The blocks are from the Microsoft Compound Document File Format Sector Allocation Table
(SAT). The SAT is an array of Sector IDs (SecIDs), a 4-byte value, that list the internal file
sectors where user streams are stored in the document [27].

Each entry in the SAT lists the index of the next SecID in the chain or a special reserved value
that provides meta-information about the chain. For example, a SAT stored in little-endian order
that has 0x01 00 00 00 at index 0, 0x02 00 00 00 and index 1, 0x03 00 00 00 at index 2, and
0xFE FF FF FF at index 3, indicates that a user stream is stored in sectors 0 - 3 and that 3 is
the last sector in the chain (a SecID value of -2 indicates that the sector is the last in the chain).
A hexdump of three sample blocks with different SecID arrays is shown in Figure 5.2.

Blocks 29, 35-36 and 40 occur on average 2,934 times in the corpus in embedded JPEG files in
various container files. Each block consists of a repeating 4-gram pattern 0x28 A2 80 0A. The
first occurrence of each block is preceded by a JPEG File Interchange Format (JFIF) Header.
The header began with a Start of Image (SOI) marker, (0xFF D8), followed by the JFIF Ap-
plication Use (APP0) marker, (0xFF E0) in the Microsoft Office, JPEG and Macromedia Flash
files and (0xFF EE) in the Adobe Acrobat files [28, 29]. The JFIF header in the Microsoft Of-
fice, JPEG and Macromedia Flash files also contained the identifier “JFIF”, (0x4A 46 49 46
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Block 26 - Sector Allocation Table(SAT)

00000000 01 00 00 00 02 00 00 00 03 00 00 00 04 00 00 00 00
00000010 05 00 00 00 06 00 00 00 07 00 00 00 08 00 00 00 00
00000020 09 00 00 00 0a 00 00 00 0b 00 00 00 0c 00 00 00 00
00000030 0d 00 00 00 0e 00 00 00 0f 00 00 00 10 00 00 00 00
00000040 11 00 00 00 12 00 00 00 13 00 00 00 14 00 00 00 00

Block 31 - SAT

00000000 01 02 00 00 02 02 00 00 03 02 00 00 04 02 00 00 00
00000010 05 02 00 00 06 02 00 00 07 02 00 00 08 02 00 00 00
00000020 09 02 00 00 0a 02 00 00 0b 02 00 00 0c 02 00 00 00
00000030 0d 02 00 00 0e 02 00 00 0f 02 00 00 10 02 00 00 00
00000040 11 02 00 00 12 02 00 00 13 02 00 00 14 02 00 00 00

Block 32 - SAT

00000000 81 02 00 00 82 02 00 00 83 02 00 00 84 02 00 00 00
00000010 85 02 00 00 86 02 00 00 87 02 00 00 88 02 00 00 00
00000020 89 02 00 00 8a 02 00 00 8b 02 00 00 8c 02 00 00 00
00000030 8d 02 00 00 8e 02 00 00 8f 02 00 00 90 02 00 00 00
00000040 91 02 00 00 92 02 00 00 93 02 00 00 94 02 00 00 00

Figure 5.2: Govdocs1 blocks 24-28, 30-34, 37-39 and 41-50 were found in the Compound Document File Format Sector
Allocation Table (SAT) and contain an array of 4-byte Sector IDs (SecIDs) that list the sectors that user streams are
stored in. This diagram shows the first 80 bytes of three sample blocks with different arrays of SecIDs.

JFIF Header in Microsoft Power Point files

00000000 ff d8 ff e0 00 10 4a 46 49 46 00 01 01 01 01 2c |......JFIF.....,|
00000010 01 2c 00 00 ff db 00 43 00 08 06 06 07 06 05 08 |.,.....C........|
00000020 07 07 07 09 09 08 0a 0c 14 0d 0c 0b 0b 0c 19 12 |................|
00000030 13 0f 14 1d 1a 1f 1e 1d 1a 1c 1c 20 24 2e 27 20 |........... $.’ |
00000040 22 2c 23 1c 1c 28 37 29 2c 30 31 34 34 34 1f 27 |‘‘,#..(7),01444.’|

JFIF Header in Adobe Acrobat files

00000000 ff d8 ff ee 00 0e 41 64 6f 62 65 00 64 00 00 00 |......Adobe.d...|
00000010 00 01 ff db 00 43 00 0e 0a 0b 0d 0b 09 0e 0d 0c |.....C..........|
00000020 0d 10 0f 0e 11 16 24 17 16 14 14 16 2c 20 21 1a |......$....., !.|
00000030 24 34 2e 37 36 33 2e 32 32 3a 41 53 46 3a 3d 4e |$4.763.22:ASF:=N|
00000040 3e 32 32 48 62 49 4e 56 58 5d 5e 5d 38 45 66 6d |>22HbINVX]^]8Efm|

Figure 5.3: Many of the Govdocs1 common blocks are in embedded JPEG images. This diagram shows the first 80
bytes of the JFIF header in the block proceeding the instance of Block 29 in two file types. The JFIF header in a
Microsoft Power Point file starts with (0xFF D8 FF E0) and includes the string ”JFIF” . Note that the ASCII character
at position 0x40 in the Microsoft Power Point JFIF header is the straight double quote character (0x22). The JFIF
header in an Adobe Acrobat file starts with (0xFF D8 FF EE).

00) [30]. Figure 5.3 shows a hexdump of both headers.

OCMalware
The top 50 common blocks in OCMalware have various types of content. We did not reverse
engineer any of the malware samples because it is outside of the scope for this thesis. We
generally determined block functions by statically analyzing the content when appropriate and
comparing the malware blocks to other blocks from known files in the NSRL2009–we computed

29



the SHA-1 of the top 50 common 4 KiB malware blocks to compare to NSRL2009.

Similar to the common blocks of Govdocs1, there are many occurrences of the NUL block
and the uni-gram block with all 1s, the first and fourth most common blocks in the corpus,
respectively.

Block 2 occurs 741,084 times and consists of a repeating uni-gram, 0x90. The majority of the
files that have block 2 are PE32 Executables for Intel x86 machines and the block was not found
in the NSRL2009. The hex value 0x90 is the Intel x86 No Operation (NOOP) instruction that
has no effect on the machine context but advances the instruction pointer [31]. A sequence
of NOOP instructions is often used to pad the area around a target instruction when the exact
location of the instruction is unknown. If the execution flow reaches the NOOP sequence, then
the instruction pointer will ‘slide’ to the target location. NOOP slides are often used in buffer
overflows and similar exploits [32].

We suspect that block 2 is a NOOP slide due to the nature of the files in OCMalware, but it
would require additional analysis of each containing file to confirm the block’s function.

Block 3 occurs 7,022 times and consists of a repeating uni-gram, 0x2E. All of the containing
files are PE32 executables. However, there is no 1-byte Intel x86 instruction with that value.
This block matches blocks in NSRL2009. All of the containing NSRL files have file extensions
for image file formats (i.e. JPG, GIF). The hex value 0x2E 2E 2E is the RGB value for dark
gray. Block 3 is probably included in the data portion of the executable and may contain an
embedded image.

Blocks 5-50 occur on average 114,999 times and have high entropy of 7.22. The blocks occur
at the same offset in the containing files. For example, block 5 occurs at offset 4,096 in 125,025
unique files: each file has a unique MD5 hash and file size. A sample of the containing files
are as reported by VirusTotal.com, a free virus, malware and URL online scanning service [25].
VirusTotal.com compares hashes to 40 antivirus signature sets and identifies matching malware
instances. The sampled file hashes match different variants of the YahLover Worm, a low risk
virus that enumerates system files and directories [33].

All 46 high entropy common blocks occur in the same 125,000 files. Each file is 255 KB, on
average and the first 60 4 KiB blocks occur in each file at the same offset. The blocks don’t
match any blocks in NSRL so we know that the blocks are specific to these malware samples.
We suspect that all of these files are variants of the YahLover worm and that the files were
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OCMalware Frequency Number of Entropy Pattern Description
Block Ranging Files Size (Bytes)
1 13,396,994 547,662 0 1 NUL block (0x00)
2 741,084 7,022 0 1 Repeating n-gram block (0x90)
3 218,134 1,330 0 1 Repeating n-gram block (0x2E)
4 133,492 4,662 0 1 All 1s (0xFF)
5-50* 114,999 114,999 7.22 N/A Blocks from variants

of the same malware sample

Table 5.4: The top 50 most common blocks in OCMalware include four repeating uni-grams and 46 high-entropy
blocks. The repeating uni-grams are the NUL block, the block of all ones, a potential NOOP slide and data block
that matches image files in the NSRL2009. The high-entropy blocks occur exclusively in variants of a malware sample.
This block can help identify other variants of the same file. This table lists the frequency, number of containing files,
entropy, pattern size and description for each block. Rows that have a ’*’ next to the block id show average values.

slightly modified by adding bytes to the end of the file. The modifications change the file hash
which would prevent detection by antivirus scanners but not the block hashes as demonstrated
by our findings.

This is an important finding because the common blocks are distinct to a specific malware
sample and can be used to find other variants of the malware. Other malware samples may
share blocks as a result of hand-patching existing malware and code reuse.

5.2.2 Random Pair and Common Blocks
We analyzed 50 random pair and common blocks in Govdocs1. The common blocks occur
between three and five times in the corpus. We call these blocks low-occurrence blocks because
they are repeated in the corpus but not often. The results of our analysis show that many of the
low-occurrence blocks occur in files that are extremely similar and have many of their blocks in
common. This occurs when files are copied and modified, created using the same template, or
embedded into the same files. In the case of Govdocs1, they maybe a result of the acquisition
methodology. These blocks are not distinct according to our definition but in some cases can
be used to identify a class of content, similar to how the high entropy malware blocks identify
other variants of the same malware.

Other low-occurrence blocks occur in files that only share a few blocks in common and the files
are visually distinct. It is not clear why the block is repeated in this instance. It could occur due
to a similarity in internal file structure or a small shared embedded file–for example, a shared
embedded font. No general conclusion as to the root cause of these blocks was identified.

The following subsection describes the types of low-occurrence blocks seen in Govdocs1.
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5.2.3 Findings

Analysis of the 50 random low-occurrence blocks in Govdocs1 is summarized in Table 5.5.
The containing files as named in the Govdocs1 corpus are listed. The blocks occur in files of
the same type or in the same file. Most of the blocks have high entropy although there are
occurrences of low entropy blocks and one block has a repeating n-gram.

Blocks 51-90 occur in files that are nearly identical sharing almost all blocks in common except
for the first and last block, files with revisions of the same content, files that use the same
template and embedded files. All such files share the majority of their blocks in common at the
same offset.

Nearly identical files have similar file sizes and all of the blocks are identical except for the
trailing block. The blocks only occur in these files throughout the corpus and and there are
instances of high and low entropy blocks. For example block 51 occurs in two visually identical
PDF files that have 100% of their full blocks in common.

Files with revisions of the same content have file meta-data that indicates as such. We visually
inspected the files to confirm that the contents were very similar. These blocks occur at the same
offset, generally have high entropy and are only common to the containing files. For example,
block 72 occurs in two Microsoft Power Point files that have the same creation date, author
and title. The first file, 208098.ppt, is labeled as revision 155 and was last saved in September
2005 and the second file, 723019.ppt, is revision 164 and was last saved 22 days later. Both
presentations have similar content and visual style; 96% of the blocks in 208098.ppt are pair
blocks that only repeat in the 723019.ppt.

Files that use the same Microsoft Word or Power Point template share many blocks in common.
These blocks have high entropy and occur at the same offset. For example, block 74 occurred
in two Power Point Files that were different sizes, created and edited by different users, had
different content but both use the Focused senses design template indicated in the file meta-
data. The Power Point files share 76 blocks that only occur in these two files.

Files that share embedded content contain the same embedded file. For example, block 78
occurs in 161839.ppt and 235468.ppt, two Microsoft Power Point presentations with different
content and style. However, both presentations have an embedded PNG image of a government
agency logo. Block 78 is one of 20 pair blocks that make up the PNG image.
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All of the similar blocks, except for the template blocks, can be used to identify similar files;
files that have different variants of the same content. Blocks that contain Microsoft Templates
can be automatically identified using the NSRL RDS.

Each of the similar files has a unique file hash that would prevent identifying the similarity
using file hashing. However, Roussev’s similarity digest would rate these files as having shared
content [34].

Blocks 91-95 only occur in the same file. For example, block 91 occurs in a log file with ASCII
text. The block occurs twice in the file and contains the same lines of log date. The repeated
blocks have low entropy. These blocks are distinct according to our definition because the repeat
block occurrence happens in the same file. Since the block is not repeated in any other file, it
can be used to identify a specific file.

Blocks 96-100 occur in different files of the same type that have different sizes and meta data
and appear visually distinct and unrelated. For example, block 100 is high entropy and appears
in two PDF files at different offsets. The files are mostly text and contain different content.
The first file, 322064.pdf, is 2 pages long and contains text and an image of a United States
map. The second file, 134635.pdf, is 24 pages and contains all text. The files share 94 blocks
in common, more than 55% for each file, and the blocks are contiguous in each file.

It is not clear why these documents share so many blocks in common. If the blocks are specific
to PDF files, then we would expect to see more instances occur in other PDF files throughout
the corpus. Perhaps we would find more instances with a larger corpus or perhaps the blocks
identify a specific computer that was used to create the file.

5.3 Initial Statistical Analysis of Block Types
As illustrated in Table 5.6, the singleton blocks have the highest average entropy, the lowest
percentage of repeating n-grams blocks and the highest average n-gram pattern size. The com-
mon blocks have the lowest average entropy, the largest percentage of repeating n-gram blocks
and the lowest average n-gram pattern size. This is not surprising because we expect blocks
with high entropy to appear less frequently in the corpus than blocks with low entropy. We also
expect longer patterns to appear less frequently then shorter patterns because there are more bits
of entropy in the former.

Based on our analysis of the most common and low-occurrence blocks in Govdocs1 and OC-
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Malware, we believe that any sector that has low entropy or a repeating n-gram is likely not dis-
tinct. If most files contain distinct blocks, then filtering sectors with likely non-distinct blocks
will allow us to identify files and minimize the number of database operations. Additional
analysis is required to affirm this hypothesis and determine an appropriate entropy threshold.
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Govdocs1 Frequency Entropy N-gram File File Containing
Block Size Type Relation Files
Ranking (Bytes)
Blocks Repeated in Similar Files
51 2 7.85 PDF Nearly Identical 398395.pdf 635062.pdf
52 2 5.45 TEXT Nearly Identical 103501.html 186235.text
53 4 7.35 PDF Nearly Identical 883566.pdf 883682.pdf

887380.pdf 902600.pdf
54 2 7.92 PPT Revisions 400527.ppt 816306.ppt
55 2 7.78 PPT Revisions 737795.ppt 831305.ppt
56 2 7.88 PPT Revisions 125596.ppt 344997.ppt
57 2 7.92 PPT Revisions 716143.ppt 896918.ppt
58 2 7.63 PPT Revisions 823851.ppt 823850.ppt
59 2 7.95 PPT Revisions 081192.ppt 222426.ppt
60 2 6.64 PPT Revisions 060050.ppt 733179.ppt
61 2 7.96 PPT Revisions 265577.ppt 718449.ppt
62 2 7.92 PPT Revisions 520238.ppt 520257.ppt
63 2 7.85 PPT Revisions 759319.ppt 930569.ppt
64 2 7.60 PPT Revisions 470989.ppt 720950.ppt
65 2 3.59 PPT Revisions 153678.ppt 158011.ppt
66 2 7.49 PPT Revisions 219463.ppt 499297.ppt
67 2 3.61 PPT Revisions 148699.ppt 470007.ppt
68 2 7.95 PPT Revisions 550550.ppt 729042.ppt
69 2 7.91 PPT Revisions 223916.ppt 432439.ppt
70 2 7.93 PPT Revisions 852904.ppt 877644.ppt
71 2 7.94 PPT Revisions 328305.ppt 769590.ppt
72 2 5.53 PPT Revisions 208098.ppt 723019.ppt
73 2 7.88 PPT Revisions 251761.ppt 251763.ppt
74 2 7.84 PPT Common Template 064978.ppt 064978.ppt
75 2 7.92 PPT Common Template 113862.ppt 113862.ppt
76 4 7.89 WORD Common Template 328908.doc 448441.doc

510693.doc 552838.doc
77 5 1.675 18 WORD Common Template 128593.doc 134249.doc

260394.doc 779316.doc
944415.doc

78 2 7.95 PPT Embedded Image 161839.ppt 235468.ppt
79 2 0.96 PS Similar 265414.ps 310640.ps
80 2 7.95 WORD Similar 497046.doc 541565.doc
81 2 0.52 WORD Similar 042097.doc 215070.doc
82 2 7.95 PDF Similar 153927.pdf 512812.pdf
83 2 7.95 PPT Similar 514540.ppt 876566.ppt
84 2 7.91 PDF Similar 785678.pdf 823177.html
85 2 3.58 PPT Similar 582372.ppt 593079.ppt
86 2 1.43 PS Similar 265414.ps 310640.ps
87 2 4.05 PS Similar 144630.ps 742084.ps
88 2 5.42 HTML Similar 564700.html 844361.html
89 2 5.06 XML Similar 370547.xml 649858.xml
90 3 1.43 XLS Similar 675701.xls 677169.xls

688704.xls

Blocks Repeated in the Same File
91 3 1.76 WORD Same file 051904.doc
92 2 2.25 PPT Same file 656483.ppt
93 2 4.29 WORD Same file 900384.doc
94 2 4.62 TXT Same file 108573.log
95 2 2.94 PS Same file 974311.ps

Blocks Repeated in Dissimilar Files
96 2 7.95 PDF Dissimilar 036978.pdf 698843.pdf
97 2 7.96 PDF Dissimilar 503976.pdf 895665.pdf
98 2 7.95 PDF Dissimilar 302985.pdf 321983.pdf
99 2 7.93 PDF Dissimilar 630279.pdf 927000.pdf
100 2 7.94 PDF Dissimilar 134635.pdf 322064.pdf

Table 5.5: Fifty random low-occurrence blocks in Govdocs1 occurred in a few files in the corpus and no where else.
Some of the containing files were similar, sharing a large percentage of pair or common blocks and containing similar
content. Special types of similar files include nearly identical files, files with revisions of the same content, files that
shared a common template and files that shared embedded content. Other blocks repeated in the same file and still
other blocks occurred in dissimilar files where there was no perceived similarity in content or file metadata. It is unclear
why blocks repeat in dissimilar files although our results show that this scenario does occur.
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Measurement Singleton Pair Common
Average entropy (per byte) 6.68 6.61 5.52
Standard deviation 1.92 0.34 2.70
Percentage of blocks that contain repeating n-grams 0.12 0.48 10.62
Avgerage n-gram size (bytes) 755 557 315
Standard deviation 33 56 170

Table 5.6: The entropy and n-gram statistics for singleton, pair and common blocks in Govdocs1. As expected the
singleton blocks have the highest average entropy and the common blocks have the highest percentage of repeating
n-gram blocks with the shortest average n-gram size.
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CHAPTER 6:
Data Storage Experiment

Deploying sector hashing for full media analysis and sampling strongly requires a high perfor-
mance database. The database must be able to store the file block hashes of every file that we
have ever seen be fast enough to support triage at disk I/O speed. Previously published sec-
tor hashing methods do not scale for this number of files [10, 12]. It is critical therefore that
our application supports both a large and fast database to leverage the intelligence from many
previous investigations instead of just a few target files.

A database with 1 billion hashes will support a sufficient amount of content for many applica-
tions. One billion (109) 512 B block hashes can reference 1 billion 512 B file blocks, which is
512 GB of known content, which is large enough to store each of the corpora analyzed in this
thesis. Similarly, 1 billion 4 KiB block hashes can reference 4 TB of known content, which is
larger than the collection of known child pornography at the National Center for Missing and
Exploited Children [35].

Today, we can read a 1 TB (1012) hard drive in 200 minutes at maximum I/O transfer rate [7].
A 1 TB hard drive has 2 billion 512 B sectors and therefore a maximum sector reading rate of
150 K sectors/second. Assuming that hashing is free, the disk sector hashes are available to
compare to the file block hash database at the same rate. Therefore the database must support a
query rate of 150 K lookups per second for full media analysis.

With media sampling the required rates are not as high. As discussed in Chapter 1, sampling just
1 million randomly chosen disk sectors can identify 4 MB of content with 98.17% probability,
provided that each of the 8,000 content blocks are distinct. A 7200 RPM hard drive can perform
approximately 300 seeks per second. If pre-sorted it is possible to read 1 million randomly
chosen sectors in 30 minutes on most systems today. Thus, for the random sampling application,
a database query rate of a few thousand transactions per second is sufficient [7].

Our goal for the data storage experiment is to determine if we can achieve sufficient database
query rates to support media sampling.
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6.1 Purpose
The purpose of this experiment is to determine the relative performance of several general
purpose SQL and NoSQL database management systems (DBMS) for storing and performing
queries on a large file block hash database.

A general purpose DBMS is typically designed to meet many usage requirements including data
accuracy and availability, resilience to errors and loss, simultaneous read and write access by
multiple users and enterprise scalability [36–39]. The usage requirements for the hash database
are not as broad. The database is essentially a key-value store where the key is a cryptographic
hash of the file block and the value is a file identification number and byte offset where the
block occurs. For the single-system field-deployed usage model, the database will rarely be
updated, and run on a single laptop accessed by one or few connections. The most critical
usage requirement is that the DBMS can perform fast queries for a database with one billion
rows. To our knowledge, there are no previous benchmark tests that focuses on the specific
usage requirements of full media analysis with sector hashing.

We used standard configuration options for each DBMS to measure the database query per-
formance. No external pre-filtering was performed, such as using a bloom filter to distinguish
between queries of absent and likely present hashes in the database. However, the results in Ta-
ble 7.1 suggest that the DBMSs use their own pre-filtering since absent queries are performed
at a faster rate then present queries.

6.2 Methodology
We tested the performance of three SQL DBMSs: MySQL, postgreSQL and SQLite, and one
NoSQL DBMS: MongoDB. We used the latest software at the time of our study as shown in
Table 6.2. For each DBMS, we built four databases that contain a single table of 1 million,
10 million, 100 million or 1 billion rows. We performed hash query tests on the databases to
determine the performance of all DBMSs. Note that in the MongoDB DBMS, tables are called
collections and rows are called documents [40]. We use the terms table and row generally
for all DBMSs. Since each database only has one table, we use the terms database and table

interchangeably.

The experiment is separated into several steps described in the following discussion.

First, we generated the file block hash data and save it in tab-delimited plain-text files. There
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897316929176464ebc9ad085f31e7284 0 0
b026324c6904b2a9cb4b88d6d61c81d1 1 1
26ab0db90d72e28ad0ba1e22ee510510 2 2
6d7fce9fee471194aa8b5b6e47267f03 3 3
48a24b70a0b376535542b996af517398 4 4
1dcca23355272056f04fe8bf20edfce0 5 5
9ae0ea9e3c9c6e1b9b6252c8395efdc1 6 6
84bc3da1b3e33a18e8d5e1bdd7a18d7a 7 7
c30f7472766d25af1dc80b3ffc9a58c7 8 8
7c5aba41f53293b712fd86d08ed5b36e 9 9

Figure 6.1: The data shown is the first ten lines of a hash data file. We created 12 hash data files for each database.
The first column in the file is an MD5 hash, the second is a fileid identification number and the third is a byte
offset. The first line represents a block from file 0 at byte offset 0 (the start of the file) with a MD5 hash of
897316929176464ebc9ad085f31e7284. The files were used to bulk load data into the databases, the fastest load
method for each DBMS.

are twelve data files in total; one for each of the 1 million, 10 million and 100 million row
databases and ten for the 1 billion row database – the billion row database is split into ten data
files of 100 K rows, one of which is the data file for the 100 million row database. Each row
in a data file corresponds to a row in the database and contains information for a file block; an
MD5 hash, file identification number, and byte offset as shown in Figure 6.1.

We chose to pre-generate the data as opposed to generating it at load time because file bulk
loading is the fastest way to populate databases and each DBMS supports data loading from a
comma or tab-separated file. Additionally, pre-generating the data prevents work duplication
when loading multiple instances of the same database stored in different DBMSs. Another
method for avoiding duplication is to build the database in one DBMS, query the data and load
it into all other DBMSs. Although this would prevent storing the data in an additional format,
the method is not as efficient as loading from a file.

Next, we created the database and the schema defining the columns in each row and the data type

of each column. There are three columns in each table, hash, fileid and offset that correspond to
the file block data as previously described. The data schema is discussed in detail in Section 6.3.
The database creation commands that define the schema are listed in Table 6.1.

All the DBMSs support a database index, a search data structure created from a column in
the database that significantly improves performance of queries on data stored in the indexed
column. Without an index, each query is compared to every row in the database. Using an
index causes slower write times because the index structure is dynamically built when the data
is inserted. Building the index after all the data is written to the database allows for both fast
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MySQL InnoDB:

create table hashes (hash char(32), fileid integer, offset integer) engine=innodb

MySQL MyISAM:

create table hashes (hash char(32), fileid integer, offset integer) engine=innodb

PostgreSQL:

create table hashes (hash char(32), fileid integer, offset integer)

SQLite:

create table hashes (hash text, fileid int, offset int)

MongoDB:

d[hashes]

Table 6.1: These DBMS commands create a hash database with columns hash, fileid and offset, a MD5 hash,
file identification number and byte offset, respectively. A detailed discussion of the database schema is provided in
Section 6.3. Note that MongoDB does not take column names or types when creating the database. The column
names are provided on data insert and the type is dynamically determined to best fit the data.

write times and query times. It is also better to build the index from a fully populated database
to ensure that it is well structured and will provide optimal search performance [41]. Therefore,
the database index is not created until after the data are loaded.

Third, we loaded the database by performing a bulk load from the data file as previously dis-
cussed. After the data is successfully loaded, we build the database index from the hash column.
Since we query the database to find matching file block hashes from the disk sectors, the hash

column is an obvious choice for the index.

Finally, we ran a series of timed database query tests. We created a Python software test tool
that connects to a database and performs queries for present or absent values, hash values that
exist or do not exist in the database, respectively. Python supports modules for each DBMS
as shown in Table 6.2. We discuss the algorithm to determine present and absent hashes in
Section 6.3.

During each test, queries for either present or absent hashes are performed exclusively for a
fixed amount of time. We measured the number of completed queries and the time to complete
each query. We chose to take measurements after each query to eliminate the time taken on the
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Database Python3 Module
MySQL 5.5.22 pymysql 0.5
PostgreSQL 9.1.3 psycopg2 2.4.5
SQLite 3.7.7.1 sqlite3 2.6.0
MongoDB 2.0.4 pymongo 1.9b1

Table 6.2: We used the latest versions of database software and the corresponding Python3 module. We built the
binaries for MySQL, PostgreSQL, MongoDB and pymysql. All other binaries were acquired from a Fedora 16 package
repository.

other portions of the Python program. The total time is calculated as the sum of the individual
query times. Although measuring this frequently adds to the overhead of the program, we found
that the majority of the allotted query time was spent actually accessing the database. Due to
our access method, the time measurements include the execution time for the Python database
module and for network interaction except for SQLite, which does not use a client/server model.

When searching a target disk, we expect that most of the disk sectors will not match the distinct
blocks in our hash database because we do not expect all of the known-files to exist on one disk.
Therefore, we are especially interested in the query rate for absent values.

Caching is used by all DBMSs to store recently accessed portions of the database and index–
either with an internal cache or the Operating System file system cache. We clear all caches
before a run of the experiment to start with a cold cache and run each test long enough to
achieve a steady query rate with a hot cache. A cold cache is empty and does not contain any
portions of the database. Handling a new query with a cold cache requires reading from the
disk to access the corresponding portion of the database and storing the portion in the cache for
future access. A hot cache contains portions of the database and there is a higher probability
that a new query corresponds to a portion of the database in the cache, preventing a costly
disk access. We discuss in Sections 6.5 and 6.6 the configuration settings to clear the internal
database cache and Operating System cache, respectively.

We performed the experiments on a Dell R510 server equipped with Dual Xeon E5620 2.4Ghz
processors (16 core, 12 MiB cache, 128 GiB main memory). The server ran a 64 bit version
of Fedora 16 with Linux kernel 3.4.2-1.fc16.x86_64. The databases were stored on a 21 TB
physical RAID partition running XFS, a high-performance journaling file system for 64 bit
architectures [42].
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6.3 Database Design
We designed the file block hash database to support a corpus of known files. Every database
entry, or row, is a 3-tuple that consists of a block MD5 digest (hash), a file identification number
(fileid), and a byte offset (offset). The fileid and offset identify the source file and starting byte
location of the block, respectively. The hash is the key, or index, for the database and is used to
find rows during queries.

The hash is stored as a 32 character string equal to the 32 hexadecimal characters of the MD5
hash digest. Although we originally chose a string representation of the hash for ease of use, it
was later realized that a binary representation would have been more efficient, reducing the field
size by half. Due to the time constraints, we were unable to rebuild and retest the databases using
the binary data type. Using the more compact data type will reduce the data size by 40% and
the index size by 50% increasing performance, significantly. However, the relative performance
of each DBMS should be the same with either text or binary keys.

As discussed in Section 4.2, we analyzed corpora that each consisted of millions of files. We
chose to use a 32-bit integer for the fileid, which supports up to 232 files, over 4 billion files.
We also chose to use a 32-bit integer for the offset. For a block size of 512 B, the offset field
can support files sizes up to 2.2 TB. This is much larger than the file sizes found in the corpora
presented in Section 4.2.

Similar to the hash data type, the fileid and offset data types could have been optimized for a
specific file corpus. It would be much more efficient to represent the fileid and offset together
as one 32-bit integer. For example, a 22-bit fileid and 10-bit offset can represent over 4 million
files that are 524 KB and under. The average file size for each corpora presented in Section 4.2
were all under 524 KB. This optimization would reduce the data size by 10%, but would not
allow for growth in the corpus, so we do not recommend it for a general solution.

For the experiment, we generated each row of the database using a simple equation. For row
i, the hash, fileid and offset are equal to MD5(str(i)+ ‘\n’), i and i, respectively. The hash is
computed by taking the MD5 digest of the string representation of i plus the newline character.

We used generated data instead of real data because it was simple to create an absent or present
hash for our timed query experiments. For a database of N rows, a present hash is created by
choosing a random number x between 0 and (N− 1) and generating the hash MD5(str(x)+
‘\n’). An absent hash is created by choosing a random number x and generating the hash
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Database Schema Terms
Term Definition
N The number of rows in a database.
Fi A unique identifier for the ith file in the corpus.
o A byte offset.
Fo

i The fixed-size block at offset o in Fi.
str(x) The string representation of x.
MD5(y) The 32 hexadecimal digits of the MD5 digest of y.

Database Schema Description
Column Size Experimental Value Actual Value
fileid 32 bits n ∈ 0...(N−1) Fi
offset 32 bits n ∈ 0...(N−1) o
hash 256 bits str(MD5(str(n)+ ‘\n’)) MD5(Fo

i )

Table 6.3: Each entry in the file block hash database is a 3-tuple (hash,fileid,offset). The hash is the 32 MD5
hexadecimal characters (256 bits) of a block that exists in a file represented by a unique fileid at a specific byte offset.
We list the experiment values that were used generated for the experiment. The values differ from the listed actual
values that will be used for a real block hash database. The summary of each value and its size is listed for a database
of N rows.

MD5(str(x)+ ‘x’). By definition, the former value is in the database while the latter is not.
Furthermore, since hashes are evenly distributed, our generated data has a similar distribution
to the block hashes of actual files.

Table 6.3 summarizes the entries for the generated hash database used during the experiment
and for the real hash database that will be created from a corpus of known files.

6.4 DBMS Overview
MySQL is advertised as the world’s most used open source Relational Databases Management
System (RDBMS) [43]. The software uses a client/server model and supports several back-end
data storage engines for each table in a database [44]. One of the advantages of using MySQL
is the flexibility of choosing the storage engine and optimizing a table for a specific use [45].

We measured the performance of the InnoDB and MyISAM storage engines. InnoDB is the
default storage engine for MySQL version 5.5.5 and later and is best suited for write heavy
environments where data reliability is most critical. MyISAM is the default storage engine
for MySQL versions earlier than 5.5.5 and has high performance for read heavy environments
where the data are not frequently updated [44, 45].

Both InnoDB and MyISAM support table indexing and use a B-tree data structure to store table
indexes which allows for searches, insertions and deletions in logarithmic time. Both storage
engines provide backup mechanisms although the InnoDB data reliability is more robust. Both
engines also support encrypted and compressed data storage and retrieval [44].

PostgreSQL is another leading open source object-relational database management system (OR-
DBMS). It is has been actively developed for over 15 years and has a strong reputation for reli-
ability, data integrity, and correctness [38]. The software uses a client/server model, supports a
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single storage engine and provides several index types: B-tree, Hash, GiST and GIN [41]. Each
index type uses a different algorithm to compare queries against the table index. The default
index type is B-tree. PostgreSQL also provides backup mechanisms and supports encrypted
and compressed data storage and retrieval.

SQLite is an open-source, self-contained, serverless, zero-configuration transactional SQL database
engine. Instead of using a client/server model, the software writes and reads directly from
database files on disk but still allows for multiple access at one time [39]. SQLite is known for
its simplicity and small code size ( the library size can be less than 350 KB) and is often used in
embedded devices where the database must work unattended and without human support [46].
Like the other databases, SQLite uses B-tree index types.

MongoDB is an open source NoSQL database written in C++ [37]. It uses a client/server model
and a document based model where each row of data is stored as a document object, a set of
dynamically typed key-value pairs. An advantage of using the document model is that related
data are stored together, unlike in relational databases where data is separated into multiple
tables and related, or joined, during a query [47]. Co-locating related data allows for fast query
performance.

MongoDB can automatically distribute data between multiple servers in a clustered database.
Although this feature is not useful for a laptop field-deployed usage model, it may be beneficial
to consider for a lab environment where multiple servers are available for increased perfor-
mance. MongoDB supports indexing and uses B-tree index types.

Finally, MongoDB automatically configures itself to optimize the use of system resources. This
is a difference from MySQL and PostgreSQL, both of which require users to tune the perfor-
mance of the database. One advantage of the MongoDB configuration is that it allows develop-
ers to concentrate on application development instead of performance tuning. One disadvantage
is that it depends on the software to make appropriate decisions for system use.

Table 6.4 summarizes the features of each database.

6.5 Database Configuration
We configured the database software to use 64 GiB, half of the server’s memory, for an internal
data cache. We use all of the memory to allow space for the file system cache to store the
recently accessed portions of the database file. The following sections present the configuration
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DBMS Data Model Usage Model Index Type Required Amount of Performance Tuning
MySQL (InnoDB) Relational client/server B-tree/Hash High
MySQL (MyISAM) Relational client/server B-tree High
PostgreSQL Relational client/server B-tree/Hash/GiST/GIN High
SQLite Relational disk, embedded B-tree Low
MongoDB Document Object client/server B-tree None

Table 6.4: All of the DBMSs support similar features such as database indexing and file loading. There are differences
in the Data Model, Usage Model Index Time and Required Amount of Performance Tuning. All the DBMSs use a
traditional SQL relational model except for MongoDB that uses a document object model. All of the DBMSs use a
client/server model except for SQLite, which directly accesses the database from disk. All of the DBMSs use a B-tree,
except for InnoDB and PostgreSQL, which support other index structures. Finally MySQL and PostgreSQL all require
extensive tuning to maximize performance, although the software is functional with the default settings. By design,
SQLite requires very little performance tuning and MongoDB does not provide a mechanism to customize the software’s
use of resources.

settings for each database and the summary is shown in Table 6.5.

6.5.1 MySQL
InnoDB Settings
The InnoDB storage engine maintains a storage area called the buffer pool for caching data and
indexes in memory [48]. The buffer pool is managed as a list, using a variation of the least re-
cently used (LRU) algorithm. The size of the cache is controlled by the innodb_buffer_pool_size

parameter and was set to use 64 GiB of memory, half of the server’s RAM.

We also configured InnoDB to use multiple tablespaces by enabling the innodb_file_per_table

parameter. By default InnoDB stores all of its tables and indexes in one data file. With the
multiple tablespace configuration, each InnoDB table and associated index is stored in a separate
file on disk [49]. This happens with MyISAM by default. We found this setting after having
size issues with the shared data file while building the one billion row table. We reconfigured
InnoDB to store each table in its own file and successfully built all tables indexed on the hash
values. This also minimized interaction between different runs.

The InnoDB storage engine has a special feature that automatically builds an in-memory hash
table on-demand for index values that are accessed frequently. This feature is controlled by the
innodb_adaptive_hash_index parameter. The hash index is built with a prefix of the original B-
tree index key by observing the search pattern. Every index in the B-tree index may not appear
in the hash index. The hash table allows InnoDB to take advantage of large amounts of memory
and will result in significant query rate improvements when the table fits almost entirely in main
memory. This feature is enabled by default for the InnoDB storage engine and is not available
for the MyISAM storage engine [50].
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Database Parameter Value Description
Internal Cache Settings
MySQL (InnoDB) innodb_buffer_pool_size 64 GiB The internal cache size for the table and index.
MySQL (MyISAM) key_buffer_size 64 GiB The internal cache size for the index.
PostgreSQL shared_buffers 64 GiB The internal cache size for the table and index.
SQLite cache_size 64 GiB The internal cache size for the table and index.
MongoDB n/a n/a n/a
Additional Settings
MySQL (InnoDB) innodb_file_per_table Enabled Creates a separate file for each table and index.
MySQL (InnoDB) innodb_adaptive_hash_index Enabled Builds an in-memory hash table on-demand when appropriate.

Table 6.5: We configured the internal cache for MySQL, PostgreSQL and SQLite to 64 GiB, half of the server’s
available RAM. MongoDB solely relies on the OS’s file system cache and does not use internal caching. We configured
the MySQL InnoDB engine to create a separate file for each database’s table and index, the default storage method
for all other database implementations. Finally, we maintained the default setting for the InnoDB engine that allows
for on-demand creation of an in-memory hash table index for databases that fit into resident memory.

MyISAM Settings
The MyISAM storage engine maintains a key cache to store frequently accessed index blocks.
The key cache stores blocks in a list structure that follows a least recently used strategy (LRU).
Unlike the InnoDB storage engine, MyISAM stores the table data and index in two separate files
for each table. The key cache stores frequently accessed blocks of the index file and relies on
the operating system file system cache to store frequently accessed blocks in the data file [51].

The MyISAM key cache size is controlled by the key_buffer_size parameter which was set to
64 GiB for the experiment.

6.5.2 PostgreSQL
PostgreSQL uses a shared memory buffer to cache 8 KB pages of the table and index. Each table
and index are stored in a set of 1 GB disk files [52]. The shared_buffers parameter determines
the size of the the data cache and was set to 64 GiB for the experiment

6.5.3 SQLite
SQLite uses an in-memory cache to store recently accessed 1 KB pages of the database disk
file. The database table and index are stored in one file and per our configuration, each data set
was stored in a separate database and disk file. The cache_size parameter determines the size
of the cache and was set to 64 GiB using the a PRAGMA statement to modify the operation of
the SQLite library [53].

6.5.4 MongoDB
MongoDB relies solely on the operating system to handle caching. Since the database uses
memory-mapped files for all disk I/O the OS virtual memory manager allocates memory to
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load pages, typically 4 KB, of the database table directly into memory. MongoDB does not
implement a second internal cache [54].

The advantage to this implementation is that MongoDB automatically uses all available mem-
ory as necessary to maximize performance without any additional configuration. The amount
of virtual memory can be limited using the Linux ulimit command. The disadvantage is that
MongoDB can potentially starve other processes for RAM or cause extreme thrashing if the
memory demands are higher than the available RAM. The MongoDB developers recommend
ensuring that data will fit in available memory to avoid significant performance loss [55]. This
is a concern for our application, due to the large number of hashes that we need to store and
query.

6.6 Server Configuration
We configured the server for high shared memory usage. There are several kernel parameters
that determine how much shared memory any one process can allocate in its virtual address
space. MySQL and PostgreSQL use shared memory to store their buffer caches so we modified
these parameters to allow for larger caches.

The shmmax parameter defines the maximum size in bytes of a single shared memory segment
and the shmall parameter defines the total amount of shared memory pages that can be used
system wide [56]. The default values allow at most 32 MiB of shared memory per process and
no more than 8 GiB of shared memory for all processes. We modified the parameters to allow
for one process to allocate a 70 GiB shared memory segment and to limit the system wide shared
memory to 70 GiB. This setting was sufficient for the 64 GiB buffer caches that we configured
each database to use.

We used the sync command to flush file system buffers to disk and wrote 3 to /proc/sys/vm/-

drop_caches to clear the file system cache between runs of the experiment.
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CHAPTER 7:
Data Storage Experiment Results

The results from the data storage experiment are summarized in Table 7.1. For each database
of 1 million, 10 million, 100 million and 1 billion rows, we show the DBMS database size and
the query rates after the millionth query and after 1,200 seconds (20 minutes) from the start of
an experiment run. We delayed the rate calculation to allow the cache to warm up and to reach
a steady query rate. Although there are cases where a DBMS requires more time to heat up
the cache, using a standard threshold across all DBMSs captures the time differences to reach
a steady query rate. The query rates are presented in units of transactions per second (TPS)
where a transaction is defined as a single query to the database for a present or absent hash. A
production system might batch multiple queries in a single transaction.

There are several major observations based on the results. The first is that none of the DBMSs
demonstrate the required performance for a 1 billion row database. As discussed in Chapter 6,
sector hashing requires a query rate of a few thousand queries/second for media sampling and
150 K queries/second for full media analysis. Our results show that most DBMSs have a suf-
ficient query rate for sampling using a hash database of 100 million rows or less. After the
millionth transaction on a 100 million row database, MySQL InnoDB and MongoDB reach
over 2 K transactions per second for present hashes and all other DBMSs except PostgreSQL
reach 1.6 K queries per second or higher. For the 1 billion row database, the performance signif-
icantly drops and none of the DBMSs achieve more than 180 queries per second, an insufficient
rate for our purposes.

The second observation is that major performance drops are due to the physical size of the
database and the duration of the experiment. There are significant performance drops between
the 10 and 100 million row databases and the 100 million and 1 billion row databases. The
performance drops for 1 billion rows are expected because the database sizes are approaching
the size of available memory – the average billion row database size is 112 GB. However, the
100 million row databases are all 17.5 GB or less and can fit into the internal DBMS cache and
the Operating System file system cache.

Analyzing the query rate over time shows that the DBMSs do not reach a steady query rate at
the end of the 100 million and 1 billion row database experiment runs. Steady query rates are
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Index and Data TPS after 1M Queries TPS after 1,200 seconds
DBMS Size (GB) Present Absent Present Absent

1 Million Rows
MySQL (InnoDB) 0.11 2.23 K 2.84 K 2.23 K 2.79 K
MySQL (MyISAM) 0.11 2.64 K 2.95 K 2.64 K 2.95 K
PostgreSQL 0.16 3.42 K 3.56 K 3.41 K 3.56 K
SQLite 0.09 32.83 K 33.33 K 32.90 K 33.33 K
MongoDB 0.19 3.07 K 3.26 K 3.07 K 3.26 K

10 Million Rows
MySQL (InnoDB) 1.12 2.18 K 2.35 K 2.18 K 2.35 K
MySQL (MyISAM) 1.05 2.48 K 2.50 K 2.50 K 2.49 K
PostgreSQL 1.54 3.36 K 4.04 K 3.33 K 3.95 K
SQLite 0.96 28.66 K 33.32 K 30.38 K 33.32 K
MongoDB 1.75 3.06 K 3.24 K 3.06 K 3.23 K

100 Million Rows
MySQL (InnoDB) 11.11 2.00 K 2.30 K 1.51 K 1.69 K
MySQL (MyISAM) 10.44 – 1.60 K 0.09 K 1.10 K
PostgreSQL 15.00 – – 0.05 K 0.36 K
SQLite 9.60 – 32.12 K 0.11 K 18.56 K
MongoDB 17.49 2.92 K 3.26 K 1.34 K 3.26 K

1 Billion Rows
MySQL (InnoDB) 104.16 0.18 K 0.18 K 0.15 K 0.15 K
MySQL (MyISAM) 94.93 – – 0.04 K 0.08 K
PostgreSQL 150.00 – – 0.04 K 0.08 K
SQLite 97.00 – – 0.05 K 0.09 K
MongoDB 115.57 – – 0.04 K 0.13 K

Table 7.1: Total Transactions per Second (TPS) for highest query rate after 1 million queries and after 1,200 seconds
(20 minutes). Dashes indicate that 1 million queries were not completed. The smaller databases that are 15 GB and
below, easily fit into the server’s memory and can reach peak query rates if given enough time. We see the drop in
query rates from the 10 million row to 100 million row databases because the experiments were not run long enough for
the database to load into the cache. The 100 million row databases can easily fit into the 128 GiB of available RAM on
the server. Similarly, there is a drastic drop in the query rates for the 1 billion row databases. All of those databases,
except for PostgreSQL can fit into RAM but will take too long to load using random queries. We can achieve higher
steady query rates faster if the data is preloaded. Only MySQL MyISAM and PostgreSQL currently support index
preloading.

achieved with the smaller databases. For some DBMSs the performance at 1 million and 10
million rows is almost identical, i.e. the SQLite absent query rate for both databases is 33 K
TPS.

In Section 7.2, we discuss how the query rate changes over time. Based on the analysis, it is
possible that all of the DBMSs can achieve the required query rate for media sampling with a
1 billion row database provided that the database can fit into the available memory. The entire
database is loaded into memory over time after so many queries or with preloading prior to
querying. The memory requirements for the 1 billion row database is not practical for a field-
deployed laptop that has 16 GiB of RAM. Therefore, a custom storage solution that has smaller
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memory requirements is required. It is also potentially useful to optimize the data set to fit into
memory. However, the 1 billion row database would have to be reduced by almost 90% to fit
into the memory of a consumer laptop.

The third observation is that SQLite has the highest performance for absent queries on the
databases with 100 million rows or less. After one million transactions, SQLite achieves 32 K
transactions per second when querying for absent hashes in the database with 100 million rows,
a 3.6% performance decrease for managing 100 times more data. We believe that SQLite per-
forms so well because it directly accesses the database on disk and does not go through a
networking layer, which is necessary for the client/server model used by the other DBMSs. For
the one billion row database, SQLite has the third lowest transaction rate. However, it is possi-
ble that given more time, SQLite could reach similar performance as is demonstrated with the
smaller databases, given that the SQLite 1 billion row database is 97 GB and can fit into the
server’s available memory.

7.1 Data Size
Database size is critical to query performance. As data is queried from the database, parts
of the disk file that store the database are loaded into the file system cache and the DBMS
internal cache if available. If the database can fit into memory, meaning that the storage file is
smaller than the available RAM, then we expect that the DBMS will eventually achieve similar
performance to an in-memory database once the file has been fully loaded into the cache.

We observed the database sizes using the client program of each DBMS. The results are summa-
rized in Table 7.1 and include the size of the data and index for each database. Some databases
separate the data and index into separate files but both files are accessed to locate the data and
read the contents.

PostgreSQL has the largest data size with an average of 0.15 GB per million rows and SQLite
has the smallest data size of 0.09 GB per million rows. PostgreSQL achieves the second highest
transaction rate for the two smallest databases but has the lowest transaction rate for the larger
databases. The experiment did not explore the effects of data size on performance between
different DBMSs but our results indicate that database size effects the performance of a single
DBMS where larger databases are slower than the smaller databases.

The average size of the billion row database is 112 GB. It would require the full 128 GiB of
the server’s RAM to store the billion row table in memory for fast query rates. Running on a
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high-end consumer laptop with 16 GiB of RAM, the billion row table is too large to achieve
in-memory type performance with the current data set representations. The current data sizes
would require many more disk reads to compare disk sectors to our collection of known file
block hashes.

As previously mentioned, it is possible to make the database smaller using more compact data
types to store the hash sets. Using one 32-bit value to represent a fileid and offset and using a
160-bit value to store the hash would significantly reduce the per-row data size. However, it is
not clear if these optimizations would be sufficient to reduce the 1 billion row database below
16 GB. For future database analysis, we recommend optimizing the data set to minimize the
size.

7.2 Query Rates
The graphs in Figure 7.1 clearly illustrate the effect of database size on the absent query rate.
Although the present query rates were lower than the absent query rates, the relative perfor-
mance and general characteristics of the graphs were similar. The query rate for 1 million rows
hits the peak value almost immediately and is maintained for the duration of the test illustrated
by the flat curves with zero slope. The average database size for 1 million rows is 0.13 GB. The
rate for 10 million rows doesn’t hit the peak rate for a couple hundred seconds but then also
maintains the rate. The average database size for 10 million rows is 1.3 GB. As shown in the
figure, there is a slight decrease in the steady rate for 10 million rows although there is ten times
the amount of data being managed.

We see a dramatic decrease in query rates at 100 million rows. In Figure 7.2 it is clear that a
“peak” rate is achieved by all DBMSs except for PostgreSQL. The curve for PostgreSQL still
has a positive slope at the end of the experiment. The results listed in Table 7.1 do not count
the first 1,200 seconds (20 minutes) or 1 million transactions towards the rate. This results in a
higher measurement that is more accurate to the steady state query rate.

Clearly, a steady query rate has not been reached for the 1 billion row database experiments as
shown in Figure 7.3. This is because the databases have not been fully loaded into the cache
within the duration of the experiment. All the experiments were run for 3,600 seconds (1 hour)
except for the 1 billion row database experiment that ran for 7,200 seconds (2 hours). The steady
query rate is reached when the database has been fully loaded into the cache. This occurs after
sufficient queries that access all parts of the database. Because we are querying for hashes of
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Figure 7.1: The query rate increases over time to a peak rate which occurs when the database is fully loaded into
cache. After that time, a steady query rate is maintained for the duration of the experiment. For the 100 million and
1 billion row databases, the experiment was too Short for all DBMSs to fully load the database into the cache and a
peak steady rate was not achieved. For the 100 million row and smaller database, SQLite has the best performance
with 32 K TPS for absent queries. Higher rates are better.

randomly generated numbers the queries are well distributed and given enough time, the entire
database will likely be accessed.

It is also possible to deliberately load the cache with index preloading. Currently, MySQL
MyISAM and PostgreSQL support preloading. In MyISAM the index is loaded into the key
cache with the LOAD INDEX INTO CACHE IGNORE LEAVES SQL command, the option to
IGNORE LEAVES prevents loading non-leaf nodes from the index [57]. Index preloading is
only supported with the MyISAM storage engine. In PostgreSQL, the functionality is available
via a patch that provides the pg_prewarm function, although this patch has not yet been added
to the main distribution [58].

Another method to preload the cache is to issue a database command that would access every
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part of the database. For example, if all hashes in the database are factored into one single
calculation, then all hash values will be accessed. No testing was performed to confirm the
effectiveness of this method. For future experiments, index hashing should be used to determine
the peak data rate.

Even if the DBMSs can achieve sufficient query rates for 1 billion rows with a fully loaded
cache, it is not a practical solution for the single-host, field-deployed system. Today, the max-
imum amount of memory available with a consumer laptop is 16 GiB. This is not sufficient
to store the current 1 billion row database for any of the DBMSs. Due to the database sizes,
the conventional DBMSs do not meet the performance requirements for full media analysis or
sampling.

Several custom key-value storage solutions including hash-map, B-trees, red-black trees and
sorted vectors were created and tested during a parallel effort [7]. The data structures were
implemented using memory-mapped files and the NPS Bloom filter implementation [16]. Tests
performed on a laptop with 8 GiB of RAM and 250 GiB Solid State Drives (SSD) attached
via SATA and USB2, showed that the B-tree data structure had the highest performance for a
1 billion row database with 114.9 K TPS for absent queries and 3.7 K TPS for present queries
after 1,200 seconds. Clearly, the custom key-value storage has higher performance than the
conventional DBMSs and the solution is functional on a consumer laptop.

Based on the memory requirements and recorded query rates, the conventional DBMSs exam-
ined here are insufficient to support 1 billion block hashes for sector hashing with full media
analysis or sampling.
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Figure 7.2: All the DBMSs except for PostgreSQL reach sufficient query speeds of more than 1 K TPS in 3600 seconds.
As illustrated, PostgreSQL does not reach a steady query rate by the end of the experiment and the rate curve still has
a positive slope. SQLite has the best rate at 32 K TPS. After each of the DBMSs reach a steady rate, there is still
fluctuation perhaps due to other processes that are running on the system.
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Figure 7.3: As illustrated, none of the DBMSs achieve more than 250 TPS for a billion rows. It is clear by the slope of
the curve, that a steady rate has not yet been realized. It would take more time for the database to load into cache.
All of the 1 billion row databases can fit into the server’s 128 GiB of RAM except for PostgreSQL where the 1 billion
row database is 150 GB.
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CHAPTER 8:
Conclusion

Forensic investigations often include massive amounts of digital data stored on various media.
Given such volumes, examiners must be able to rapidly identify which media contains con-
tent of interest. Examiners identify content today by comparing files stored on the media to
a database of known file hashes collected from previous investigations. Searching for content
at the file-level is useful for in-depth analysis but not ideal for fast triage. Tools that parse
the file system are slow and must support the version on the target media and tools that carve
files based on headers and footers are not effective at identifying content from overwritten or
partially destroyed files, or content that is fragmented into multiple locations on the media.

We present a forensic method that uses sector hashing to quickly identify content of interest.
Using this method, we hash 512 B or 4 KiB disk sectors of the target media and compare those
to a hash database of fixed-sized file fragments of the same size (which we call file “blocks”).
Sector-level analysis is fast because we can parallelize the search process and sample a sufficient
number of sectors to determine with high probability if a known file exists. Sector hashing is
also file system agnostic and allows us to identify evidence that a file once existed even if it is
not fully recoverable.

Identifying content with sector hashing depends on the existence of distinct file blocks, or blocks
that only exist on media as a copy of the same original file. We analyzed three multi-million file
corpora that contain real documents, system files, legitimate and malicious software and find
that the overwhelming majority of the files contain distinct blocks that identify a specific file.
We also found examples of non-distinct common blocks that can be used to identify content
from files of a certain type and different versions of the same file. For example, we found
distinct malware samples that appear to be variants of another malware sample in our corpus
and share common blocks. This is an important finding because traditional file identification
methods would require a hash of each sample and would not find similar variants.

Using sector hashing for distinct file identification also depends on the ability to store a large
number of file block hashes that can be queried at a very fast rate. We tested the relative
performance of several conventional SQL and NoSQL databases in managing a database of one
billion hashes. Our results show that a custom storage solution is required for this method.

57



Related work by Young et al. [7], shows that a custom B-tree key-value store with a Bloom
filter pre-filter is the best solution for a 1 billion row hash database. The combined B-tree and
Bloom filter reaches 115 K TPS for absent queries and 4 K TPS for present queries, sufficient
rates to support disk sampling for fast triage of large disks and full content analysis with only
minimal performance degradation.

8.1 Limitations
There are several limitations to using sector hashes to identify target files. The main limitation is
that the files must be sector aligned on the disk for successful identification. Since we generate
the block hashes from the beginning of a file, if the file is not sector aligned on the target media,
none of the containing sectors will match the file blocks in our database. One potential solution
is to store multiple hashes for each block to account for non-sector aligned storage. This is
unpractical due to the amount of storage required to maintain the additional hashes. Another
is to abandon sector hashing and use Roussev’s similarity digest [59] which overcomes this
problem but with vastly increased processing times and storage requirements.

Fortunately, we expect most files to be sector aligned for performance reasons [7]. All three
variants of the FAT file system (FAT12, 16 and 32), the defacto format for external storage
devices, block align data. NTFS, the default file system for the current generation of Windows,
block aligns files that are 1,024 B or larger. Any file smaller than 1,024 B is stored in the Master
File Table (MFT) and not block aligned, but this is not a significant limitation as our method
is not designed to work with such small files. Ext4, the default file system for most Linux
distributions including newer versions of Android, block aligns data. ZFS, the most mature next
generation file system, stores data in dynamically sized extents that consist of multiple sectors,
and thus block aligns data [60]. The B-tree File System (BtrFS), the proposed future file system
for Linux, stores data in dynamically sized extents consisting of multiple sectors. The extents
are sector aligned. However, files smaller than 4 KiB are packed in the leaf nodes of the B-tree
file system structure and not sector aligned [61], but again, this is of little consequence.

Generally, any file that is larger than the underlying disk sector size is sector aligned by the file
system and can be identified using sector hashing. We cannot identify files that are smaller than
the sector size but we expect that most files of interest are larger than the standard sector sizes.
The overwhelming majority of files analyzed for this research are larger than 512 B and 4 KiB,
the current standard sector sizes.
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An adversary can maliciously attempt to modify files so that it is not stored on a sector boundary.
For example, semantically NUL data can be added to the beginning of a file to change the file’s
alignment and ultimately create new block hashes for the same content. Due to the internal
structure of most file types, it is not trivial to add bytes to the beginning of a file without
changing how the file is rendered. It is much easier to add bytes to the end of a file which will
change the file-level hash but maintains the block-level hashes.

It is easier for an adversary to change the file block hashes by making minor changes, or by
encrypting the file. Similarly, an adversary can embed the file into another file. The containing
file would be written on a sector boundary but the embedded file is aligned according to the file
format. In either case, if the encrypted or packaged version of the file exists in the database and
is transferred between systems without further modification, sector hashing can still identify the
file blocks.

The last limitation is the ability to search for files stored on encrypted file systems. Bitlocker for
NTFS and ReFS and FileVault2 for HFS+ encrypt data blocks as they are written to the storage
medium and decrypt when it is read back. Because each drive is encrypted with a different
key, the same data will be encrypted differently on different drives. Thus, sector hashing will
not work with these drives unless the block device is read through the file system after the
decryption key has been loaded or the drive is otherwise decrypted [7].

8.2 Future Work
There are many areas of future work within this research. It is worthwhile to explore string-
based block classification to determine if a block is likely distinct. Strings are heavily used in
forensics and malware detection and may be useful for sector-based forensics [19, 20].

Comparing block hashes across corpora is another useful research area. We compared the 4 KiB
block hashes from NSRL2009 to the top 50 most common block hashes from OCMalware and
only found matches between the NUL block and the blocks with repeating uni-grams (0xFF) and
(0x2e). It would be useful to compare the full block set between OCMalware and NSRL2009 to
determine if any of the malware samples share blocks with the software in the NSRL RDS. We
expect to see some overlap between legitimate and malicious software with malware samples
that are embedded in legitimate software.

Although the conventional DBMSs do not meet the performance requirements for 1 billion row
databases stored on a consumer laptop, the DBMSs should still be considered for the clien-
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t/server and the distributed usage models where larger amounts of memory are available. Some
DBMSs, such as MongoDB, are designed for optimal performance in a distributed or clustered
environment and automatically shard data between databases. Additionally, the DBMSs should
be tested with a more optimized data set and using a solid state drive to determine if there are
any performance enhancements based on these factors.

Sector hashing is a powerful tool for media forensics. Many files contain distinct blocks that
can be used to identify a single file. Several tools currently use sector hashing but do not scale
to support 1 billion block hashes [10,12]. The biggest limitation in using sector hashing for full
media analysis or sampling is managing the size and performance of the block hash database.
But this is a technical challenge that can be readily solved today.
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